Kaiyven Afi Leslie, Christiana Lekka, Sarah J Richardson, Mark A Russell, Noel G Morgan
{"title":"Regulation of STAT1 Signaling in Human Pancreatic β-Cells by the Lysine Deacetylase HDAC6: A New Therapeutic Opportunity in Type 1 Diabetes?","authors":"Kaiyven Afi Leslie, Christiana Lekka, Sarah J Richardson, Mark A Russell, Noel G Morgan","doi":"10.2337/db24-0008","DOIUrl":null,"url":null,"abstract":"<p><p>Type 1 diabetes arises from the selective destruction of pancreatic β-cells by autoimmune mechanisms, and intracellular pathways driven by Janus kinase (JAK)-mediated phosphorylation of STAT isoforms (especially STAT1 and STAT2) are implicated as mediators of β-cell demise. Despite this, the molecular mechanisms that regulate JAK-STAT signaling in β-cells during the autoimmune attack remain only partially disclosed, and the factors acting to antagonize proinflammatory STAT1 signaling are uncertain. We have recently implicated signal regulatory protein α (SIRPα) in promoting β-cell viability in the face of ongoing islet autoimmunity and have now revealed that this protein controls the availability of a cytosolic lysine deacetylase, HDAC6, whose activity regulates the phosphorylation and activation of STAT1. We provide evidence that STAT1 serves as a substrate for HDAC6 in β-cells and that sequestration of HDAC6 by SIRPα in response to anti-inflammatory cytokines (e.g., IL-13) leads to increased STAT1 acetylation. This then impairs the ability of STAT1 to promote gene transcription in response to proinflammatory cytokines, including interferon-γ. We further found that SIRPα is lost from the β-cells of subjects with recent-onset type 1 diabetes under conditions when HDAC6 is retained and STAT1 levels are increased. On this basis, we report a previously unrecognized role for cytokine-induced regulation of STAT1 acetylation in the control of β-cell viability and propose that targeted inhibition of HDAC6 activity may represent a novel therapeutic modality to promote β-cell viability in the face of active islet autoimmunity.</p><p><strong>Article highlights: </strong></p>","PeriodicalId":93977,"journal":{"name":"Diabetes","volume":" ","pages":"1473-1485"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2337/db24-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Type 1 diabetes arises from the selective destruction of pancreatic β-cells by autoimmune mechanisms, and intracellular pathways driven by Janus kinase (JAK)-mediated phosphorylation of STAT isoforms (especially STAT1 and STAT2) are implicated as mediators of β-cell demise. Despite this, the molecular mechanisms that regulate JAK-STAT signaling in β-cells during the autoimmune attack remain only partially disclosed, and the factors acting to antagonize proinflammatory STAT1 signaling are uncertain. We have recently implicated signal regulatory protein α (SIRPα) in promoting β-cell viability in the face of ongoing islet autoimmunity and have now revealed that this protein controls the availability of a cytosolic lysine deacetylase, HDAC6, whose activity regulates the phosphorylation and activation of STAT1. We provide evidence that STAT1 serves as a substrate for HDAC6 in β-cells and that sequestration of HDAC6 by SIRPα in response to anti-inflammatory cytokines (e.g., IL-13) leads to increased STAT1 acetylation. This then impairs the ability of STAT1 to promote gene transcription in response to proinflammatory cytokines, including interferon-γ. We further found that SIRPα is lost from the β-cells of subjects with recent-onset type 1 diabetes under conditions when HDAC6 is retained and STAT1 levels are increased. On this basis, we report a previously unrecognized role for cytokine-induced regulation of STAT1 acetylation in the control of β-cell viability and propose that targeted inhibition of HDAC6 activity may represent a novel therapeutic modality to promote β-cell viability in the face of active islet autoimmunity.