Adaptive interference suppression based on an invariant subspace of matrices matching for a horizontal array in underwater acoustics.

IF 1.2 Q3 ACOUSTICS
Xueli Sheng, Dewen Li, Ran Cao, Xuan Zhou, Jiarui Yin
{"title":"Adaptive interference suppression based on an invariant subspace of matrices matching for a horizontal array in underwater acoustics.","authors":"Xueli Sheng, Dewen Li, Ran Cao, Xuan Zhou, Jiarui Yin","doi":"10.1121/10.0026373","DOIUrl":null,"url":null,"abstract":"<p><p>Passive detection of target-of-interest (TOI) within strong interferences poses a challenge. This paper introduces an adaptive interference suppression based on an invariant subspace of matrix matching. Assume that the TOI-bearing intervals are known. We define a correlation ratio for each eigenvector to obtain the highest one. Then, we use invariant subspace of matrix matching to measure the distance between two invariant projection matrices of this eigenvector. This identifies and removes the eigenvectors associated with TOI. Finally, the remaining eigenvectors are subtracted from the sample covariance matrix to suppress interference and noise. The viability of the proposed method is demonstrated experimentally.</p>","PeriodicalId":73538,"journal":{"name":"JASA express letters","volume":"4 6","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JASA express letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/10.0026373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Passive detection of target-of-interest (TOI) within strong interferences poses a challenge. This paper introduces an adaptive interference suppression based on an invariant subspace of matrix matching. Assume that the TOI-bearing intervals are known. We define a correlation ratio for each eigenvector to obtain the highest one. Then, we use invariant subspace of matrix matching to measure the distance between two invariant projection matrices of this eigenvector. This identifies and removes the eigenvectors associated with TOI. Finally, the remaining eigenvectors are subtracted from the sample covariance matrix to suppress interference and noise. The viability of the proposed method is demonstrated experimentally.

基于水下声学水平阵列矩阵匹配不变子空间的自适应干扰抑制。
在强干扰下被动探测感兴趣目标(TOI)是一项挑战。本文介绍了一种基于矩阵匹配不变子空间的自适应干扰抑制方法。假设含有兴趣目标的区间是已知的。我们为每个特征向量定义一个相关比,以获得最高的相关比。然后,我们使用矩阵匹配的不变子空间来测量该特征向量的两个不变投影矩阵之间的距离。这样就能识别并移除与 TOI 相关的特征向量。最后,从样本协方差矩阵中减去剩余的特征向量,以抑制干扰和噪声。实验证明了所提方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信