Biomechanical Motion Changes in Adjacent and Noncontiguous Segments Following Single-Level Anterior Cervical Discectomy and Fusion: A Computed Tomography-Based 3D Motion Capture Study.
Darren R Lebl, Kathleen N Meyers, Franziska C S Altorfer, Hamidreza Jahandar, Theresa J C Pazionis, Joseph Nguyen, Patrick F O'Leary, Timothy M Wright
{"title":"Biomechanical Motion Changes in Adjacent and Noncontiguous Segments Following Single-Level Anterior Cervical Discectomy and Fusion: A Computed Tomography-Based 3D Motion Capture Study.","authors":"Darren R Lebl, Kathleen N Meyers, Franziska C S Altorfer, Hamidreza Jahandar, Theresa J C Pazionis, Joseph Nguyen, Patrick F O'Leary, Timothy M Wright","doi":"10.14444/8605","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Anterior cervical discectomy and fusion (ACDF) is known to elicit adverse biomechanical effects on immediately adjacent segments; however, its impact on the kinematics of the remaining nonadjacent cervical levels has not been understood. This study aimed to explore the biomechanical impact of ACDF on kinematics beyond the immediate fusion site. We hypothesized that compensatory motion following single-level ACDF is not predictably distributed to adjacent segments due to compensation from noncontiguous levels.</p><p><strong>Methods: </strong>Six fresh-frozen cervical spines (C2-T1) underwent fluoroscopic screening and sagittal and coronal reformats from computed tomography scans and were utilized to grade segmental degeneration. Each specimen was tested to 30° of flexion and extension intact and following single-level ACDF at the C5-C6 level. The motions of each vertebral body were tracked using 3-dimensional (3D) motion capture into an inverse kinematics model, facilitating correlations between the 3D reconstruction from computed tomography images and the 3D motion capture data. This model was used to calculate each level's flexion/extension range of motion (ROM).</p><p><strong>Results: </strong>Single-level fusion at the C5-C6 level across all specimens resulted in a significant motion reduction of -6.8° (<i>P</i> = 0.002). No significant change in ROM occurred in the immediate adjacent segments C4-C5 (<i>P</i> = 0.07) or C6-C7 (<i>P</i> = 0.15). Hypermobility was observed in 2 specimens (33%) exclusively in adjacent segments. In contrast, the other 4 spines (66%) displayed hypermobility at noncontiguous segments. Hypermobility occurred in 42% (5/12) of the adjacent segments, 28% (5/18) of the noncontiguous segments, and 50% (3/6) of the cervicothoracic segments.</p><p><strong>Conclusion: </strong>Single-level ACDF impacts ROM beyond adjacent segments, extending to noncontiguous levels. Compensatory motion, not limited to adjacent levels, may be influenced by degenerative changes in noncontiguous segments. Surprisingly, hypermobility may not occur in adjacent segments after ACDF.</p><p><strong>Clinical relevance: </strong>Overall, the multifaceted biomechanical effects of ACDF underscore the need for a comprehensive understanding of cervical spine dynamics beyond immediate adjacency, and it needs to be taken into consideration when planning single-level ACDF.</p><p><strong>Level of evidence: 4: </strong></p>","PeriodicalId":38486,"journal":{"name":"International Journal of Spine Surgery","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Spine Surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14444/8605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Anterior cervical discectomy and fusion (ACDF) is known to elicit adverse biomechanical effects on immediately adjacent segments; however, its impact on the kinematics of the remaining nonadjacent cervical levels has not been understood. This study aimed to explore the biomechanical impact of ACDF on kinematics beyond the immediate fusion site. We hypothesized that compensatory motion following single-level ACDF is not predictably distributed to adjacent segments due to compensation from noncontiguous levels.
Methods: Six fresh-frozen cervical spines (C2-T1) underwent fluoroscopic screening and sagittal and coronal reformats from computed tomography scans and were utilized to grade segmental degeneration. Each specimen was tested to 30° of flexion and extension intact and following single-level ACDF at the C5-C6 level. The motions of each vertebral body were tracked using 3-dimensional (3D) motion capture into an inverse kinematics model, facilitating correlations between the 3D reconstruction from computed tomography images and the 3D motion capture data. This model was used to calculate each level's flexion/extension range of motion (ROM).
Results: Single-level fusion at the C5-C6 level across all specimens resulted in a significant motion reduction of -6.8° (P = 0.002). No significant change in ROM occurred in the immediate adjacent segments C4-C5 (P = 0.07) or C6-C7 (P = 0.15). Hypermobility was observed in 2 specimens (33%) exclusively in adjacent segments. In contrast, the other 4 spines (66%) displayed hypermobility at noncontiguous segments. Hypermobility occurred in 42% (5/12) of the adjacent segments, 28% (5/18) of the noncontiguous segments, and 50% (3/6) of the cervicothoracic segments.
Conclusion: Single-level ACDF impacts ROM beyond adjacent segments, extending to noncontiguous levels. Compensatory motion, not limited to adjacent levels, may be influenced by degenerative changes in noncontiguous segments. Surprisingly, hypermobility may not occur in adjacent segments after ACDF.
Clinical relevance: Overall, the multifaceted biomechanical effects of ACDF underscore the need for a comprehensive understanding of cervical spine dynamics beyond immediate adjacency, and it needs to be taken into consideration when planning single-level ACDF.
期刊介绍:
The International Journal of Spine Surgery is the official scientific journal of ISASS, the International Intradiscal Therapy Society, the Pittsburgh Spine Summit, and the Büttner-Janz Spinefoundation, and is an official partner of the Southern Neurosurgical Society. The goal of the International Journal of Spine Surgery is to promote and disseminate online the most up-to-date scientific and clinical research into innovations in motion preservation and new spinal surgery technology, including basic science, biologics, and tissue engineering. The Journal is dedicated to educating spine surgeons worldwide by reporting on the scientific basis, indications, surgical techniques, complications, outcomes, and follow-up data for promising spinal procedures.