Chong Peng, Xiaofeng Liu, Xiangbo Meng, Congge Chen, Xinming Wu, Lin Bai, Fuping Lu, Fufeng Liu
{"title":"IPAD-DB: a manually curated database for experimentally verified inhibitors of proteins associated with Alzheimer's disease.","authors":"Chong Peng, Xiaofeng Liu, Xiangbo Meng, Congge Chen, Xinming Wu, Lin Bai, Fuping Lu, Fufeng Liu","doi":"10.1093/database/baae048","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a universal neurodegenerative disease with the feature of progressive dementia. Currently, there are only seven Food and Drug Administration-approved drugs for the treatment of AD, which merely offer temporary relief from symptom deterioration without reversing the underlying disease process. The identification of inhibitors capable of interacting with proteins associated with AD plays a pivotal role in the development of effective therapeutic interventions. However, a vast number of such inhibitors are dispersed throughout numerous published articles, rendering it inconvenient for researchers to explore potential drug candidates for AD. In light of this, we have manually compiled inhibitors targeting proteins associated with AD and constructed a comprehensive database known as IPAD-DB (Inhibitors of Proteins associated with Alzheimer's Disease Database). The curated inhibitors within this database encompass a diverse range of compounds, including natural compounds, synthetic compounds, drugs, natural extracts and nano-inhibitors. To date, the database has compiled >4800 entries, each representing a correspondent relationship between an inhibitor and its target protein. IPAD-DB offers a user-friendly interface that facilitates browsing, searching and downloading of its records. We firmly believe that IPAD-DB represents a valuable resource for screening potential AD drug candidates and investigating the underlying mechanisms of this debilitating disease. Access to IPAD-DB is freely available at http://www.lamee.cn/ipad-db/ and is compatible with all major web browsers. Database URL: http://www.lamee.cn/ipad-db/.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11168334/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/database/baae048","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) is a universal neurodegenerative disease with the feature of progressive dementia. Currently, there are only seven Food and Drug Administration-approved drugs for the treatment of AD, which merely offer temporary relief from symptom deterioration without reversing the underlying disease process. The identification of inhibitors capable of interacting with proteins associated with AD plays a pivotal role in the development of effective therapeutic interventions. However, a vast number of such inhibitors are dispersed throughout numerous published articles, rendering it inconvenient for researchers to explore potential drug candidates for AD. In light of this, we have manually compiled inhibitors targeting proteins associated with AD and constructed a comprehensive database known as IPAD-DB (Inhibitors of Proteins associated with Alzheimer's Disease Database). The curated inhibitors within this database encompass a diverse range of compounds, including natural compounds, synthetic compounds, drugs, natural extracts and nano-inhibitors. To date, the database has compiled >4800 entries, each representing a correspondent relationship between an inhibitor and its target protein. IPAD-DB offers a user-friendly interface that facilitates browsing, searching and downloading of its records. We firmly believe that IPAD-DB represents a valuable resource for screening potential AD drug candidates and investigating the underlying mechanisms of this debilitating disease. Access to IPAD-DB is freely available at http://www.lamee.cn/ipad-db/ and is compatible with all major web browsers. Database URL: http://www.lamee.cn/ipad-db/.