LncRNA KIFAP3-5:1 inhibits epithelial-mesenchymal transition of renal tubular cell through PRRX1 in diabetic nephropathy.

IF 5.3 2区 医学 Q2 CELL BIOLOGY
Lei Du, Yinfei Lu, Jingyi Wang, Yijia Zheng, Huan Li, Yunfei Liu, Xiaoling Wu, Jieling Zhou, Lei Wang, Linlin He, Jiasen Shi, Liu Xu, Xizhi Li, Qian Lu, Xiaoxing Yin
{"title":"LncRNA KIFAP3-5:1 inhibits epithelial-mesenchymal transition of renal tubular cell through PRRX1 in diabetic nephropathy.","authors":"Lei Du, Yinfei Lu, Jingyi Wang, Yijia Zheng, Huan Li, Yunfei Liu, Xiaoling Wu, Jieling Zhou, Lei Wang, Linlin He, Jiasen Shi, Liu Xu, Xizhi Li, Qian Lu, Xiaoxing Yin","doi":"10.1007/s10565-024-09874-5","DOIUrl":null,"url":null,"abstract":"<p><p>Long noncoding RNAs play an important role in several pathogenic processes in diabetic nephropathy, but the relationship with epithelial-mesenchymal transition in DN is unclear. Herein, we found that KIFAP3-5:1 expression was significantly down-regulated in DN plasma samples, db/db mouse kidney tissues and high glucose treated renal tubular epithelial cells compared to normal healthy samples and untreated cells. Overexpression of KIFAP3-5:1 improved renal fibrosis in db/db mice and rescued epithelial-mesenchymal transition of high glucose cultured renal tubular epithelial cells. The silence of KIFAP3-5:1 will exacerbate the progression of EMT. Mechanistically, KIFAP3-5:1 was confirmed to directly target to the -488 to -609 element of the PRRX1 promoter and negatively modulate PRRX1 mRNA and protein expressions. Furthermore, rescue assays demonstrated that the knockdown of PRRX1 counteracted the KIFAP3-5:1 low expression-mediated effects on EMT in hRPTECs cultured under high glucose. The plasma KIFAP3-5:1 of DN patients is highly correlated with the severity of renal dysfunction and plays an important role in the prediction model of DN diseases. These findings suggested that KIFAP3-5:1 plays a critical role in regulation of renal EMT and fibrosis through suppress PRRX1, and highlight the clinical potential of KIFAP3-5:1 to assist in the diagnosis of diabetic nephropathy.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11176233/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology and Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10565-024-09874-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Long noncoding RNAs play an important role in several pathogenic processes in diabetic nephropathy, but the relationship with epithelial-mesenchymal transition in DN is unclear. Herein, we found that KIFAP3-5:1 expression was significantly down-regulated in DN plasma samples, db/db mouse kidney tissues and high glucose treated renal tubular epithelial cells compared to normal healthy samples and untreated cells. Overexpression of KIFAP3-5:1 improved renal fibrosis in db/db mice and rescued epithelial-mesenchymal transition of high glucose cultured renal tubular epithelial cells. The silence of KIFAP3-5:1 will exacerbate the progression of EMT. Mechanistically, KIFAP3-5:1 was confirmed to directly target to the -488 to -609 element of the PRRX1 promoter and negatively modulate PRRX1 mRNA and protein expressions. Furthermore, rescue assays demonstrated that the knockdown of PRRX1 counteracted the KIFAP3-5:1 low expression-mediated effects on EMT in hRPTECs cultured under high glucose. The plasma KIFAP3-5:1 of DN patients is highly correlated with the severity of renal dysfunction and plays an important role in the prediction model of DN diseases. These findings suggested that KIFAP3-5:1 plays a critical role in regulation of renal EMT and fibrosis through suppress PRRX1, and highlight the clinical potential of KIFAP3-5:1 to assist in the diagnosis of diabetic nephropathy.

Abstract Image

LncRNA KIFAP3-5:1通过PRRX1抑制糖尿病肾病肾小管细胞的上皮-间质转化
长非编码 RNA 在糖尿病肾病的多个致病过程中发挥着重要作用,但其与 DN 上皮-间质转化的关系尚不清楚。在本文中,我们发现与正常健康样本和未处理细胞相比,KIFAP3-5:1在DN血浆样本、db/db小鼠肾组织和高糖处理的肾小管上皮细胞中的表达显著下调。过表达 KIFAP3-5:1 能改善 db/db 小鼠的肾脏纤维化,并能挽救高糖培养的肾小管上皮细胞的上皮-间质转化。KIFAP3-5:1的沉默会加剧EMT的进展。从机理上讲,KIFAP3-5:1 被证实直接靶向 PRRX1 启动子的 -488 至 -609 元,并负向调节 PRRX1 mRNA 和蛋白的表达。此外,拯救试验表明,在高糖条件下培养的 hRPTECs 中,PRRX1 的敲除抵消了 KIFAP3-5:1 低表达介导的对 EMT 的影响。DN患者血浆KIFAP3-5:1与肾功能不全的严重程度高度相关,在DN疾病的预测模型中发挥着重要作用。这些研究结果表明,KIFAP3-5:1通过抑制PRRX1在调控肾脏EMT和纤维化中发挥着关键作用,并突出了KIFAP3-5:1在辅助诊断糖尿病肾病方面的临床潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Biology and Toxicology
Cell Biology and Toxicology 生物-毒理学
CiteScore
9.90
自引率
4.90%
发文量
101
审稿时长
>12 weeks
期刊介绍: Cell Biology and Toxicology (CBT) is an international journal focused on clinical and translational research with an emphasis on molecular and cell biology, genetic and epigenetic heterogeneity, drug discovery and development, and molecular pharmacology and toxicology. CBT has a disease-specific scope prioritizing publications on gene and protein-based regulation, intracellular signaling pathway dysfunction, cell type-specific function, and systems in biomedicine in drug discovery and development. CBT publishes original articles with outstanding, innovative and significant findings, important reviews on recent research advances and issues of high current interest, opinion articles of leading edge science, and rapid communication or reports, on molecular mechanisms and therapies in diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信