Bianca-Ştefania Munteanu, Alexandra Murariu, Mǎrioara Nichitean, Luminiţa-Gabriela Pitac, Laura Dioşan
{"title":"Value of Original and Generated Ultrasound Data Towards Training Robust Classifiers for Breast Cancer Identification","authors":"Bianca-Ştefania Munteanu, Alexandra Murariu, Mǎrioara Nichitean, Luminiţa-Gabriela Pitac, Laura Dioşan","doi":"10.1007/s10796-024-10499-6","DOIUrl":null,"url":null,"abstract":"<p>Breast cancer represents one of the leading causes of death among women, with 1 in 39 (around 2.5%) of them losing their lives annually, at the global level. According to the American Cancer Society, it is the second most lethal type of cancer in females, preceded only by lung cancer. Early diagnosis is crucial in increasing the chances of survival. In recent years, the incidence rate has increased by 0.5% per year, with 1 in 8 women at increased risk of developing a tumor during their life. Despite technological advances, there are still difficulties in identifying, characterizing, and accurately monitoring malignant tumors. The main focus of this article is on the computerized diagnosis of breast cancer. The main objective is to solve this problem using intelligent algorithms, that are built with artificial neural networks and involve 3 important steps: augmentation, segmentation, and classification. The experiment was made using a publicly available dataset that contains medical ultrasound images, collected from approximately 600 female patients (it is considered a benchmark). The results of the experiment are close to the goal set by our team. The final accuracy obtained is 86%.</p>","PeriodicalId":13610,"journal":{"name":"Information Systems Frontiers","volume":"1 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems Frontiers","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10796-024-10499-6","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer represents one of the leading causes of death among women, with 1 in 39 (around 2.5%) of them losing their lives annually, at the global level. According to the American Cancer Society, it is the second most lethal type of cancer in females, preceded only by lung cancer. Early diagnosis is crucial in increasing the chances of survival. In recent years, the incidence rate has increased by 0.5% per year, with 1 in 8 women at increased risk of developing a tumor during their life. Despite technological advances, there are still difficulties in identifying, characterizing, and accurately monitoring malignant tumors. The main focus of this article is on the computerized diagnosis of breast cancer. The main objective is to solve this problem using intelligent algorithms, that are built with artificial neural networks and involve 3 important steps: augmentation, segmentation, and classification. The experiment was made using a publicly available dataset that contains medical ultrasound images, collected from approximately 600 female patients (it is considered a benchmark). The results of the experiment are close to the goal set by our team. The final accuracy obtained is 86%.
期刊介绍:
The interdisciplinary interfaces of Information Systems (IS) are fast emerging as defining areas of research and development in IS. These developments are largely due to the transformation of Information Technology (IT) towards networked worlds and its effects on global communications and economies. While these developments are shaping the way information is used in all forms of human enterprise, they are also setting the tone and pace of information systems of the future. The major advances in IT such as client/server systems, the Internet and the desktop/multimedia computing revolution, for example, have led to numerous important vistas of research and development with considerable practical impact and academic significance. While the industry seeks to develop high performance IS/IT solutions to a variety of contemporary information support needs, academia looks to extend the reach of IS technology into new application domains. Information Systems Frontiers (ISF) aims to provide a common forum of dissemination of frontline industrial developments of substantial academic value and pioneering academic research of significant practical impact.