Giuseppe Insana, Maria J Martin, William R Pearson
{"title":"Improved selection of canonical proteins for reference proteomes.","authors":"Giuseppe Insana, Maria J Martin, William R Pearson","doi":"10.1093/nargab/lqae066","DOIUrl":null,"url":null,"abstract":"<p><p>The 'canonical' protein sets distributed by UniProt are widely used for similarity searching, and functional and structural annotation. For many investigators, canonical sequences are the only version of a protein examined. However, higher eukaryotes often encode multiple isoforms of a protein from a single gene. For unreviewed (UniProtKB/TrEMBL) protein sequences, the longest sequence in a Gene-Centric group is chosen as canonical. This choice can create inconsistencies, selecting >95% identical orthologs with dramatically different lengths, which is biologically unlikely. We describe the ortho2tree pipeline, which examines Reference Proteome canonical and isoform sequences from sets of orthologous proteins, builds multiple alignments, constructs gap-distance trees, and identifies low-cost clades of isoforms with similar lengths. After examining 140 000 proteins from eight mammals in UniProtKB release 2022_05, ortho2tree proposed 7804 canonical changes for release 2023_01, while confirming 53 434 canonicals. Gap distributions for isoforms selected by ortho2tree are similar to those in bacterial and yeast alignments, organisms unaffected by isoform selection, suggesting ortho2tree canonicals more accurately reflect genuine biological variation. 82% of ortho2tree proposed-changes agreed with MANE; for confirmed canonicals, 92% agreed with MANE. Ortho2tree can improve canonical assignment among orthologous sequences that are >60% identical, a group that includes vertebrates and higher plants.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"6 2","pages":"lqae066"},"PeriodicalIF":4.0000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11165316/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqae066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
The 'canonical' protein sets distributed by UniProt are widely used for similarity searching, and functional and structural annotation. For many investigators, canonical sequences are the only version of a protein examined. However, higher eukaryotes often encode multiple isoforms of a protein from a single gene. For unreviewed (UniProtKB/TrEMBL) protein sequences, the longest sequence in a Gene-Centric group is chosen as canonical. This choice can create inconsistencies, selecting >95% identical orthologs with dramatically different lengths, which is biologically unlikely. We describe the ortho2tree pipeline, which examines Reference Proteome canonical and isoform sequences from sets of orthologous proteins, builds multiple alignments, constructs gap-distance trees, and identifies low-cost clades of isoforms with similar lengths. After examining 140 000 proteins from eight mammals in UniProtKB release 2022_05, ortho2tree proposed 7804 canonical changes for release 2023_01, while confirming 53 434 canonicals. Gap distributions for isoforms selected by ortho2tree are similar to those in bacterial and yeast alignments, organisms unaffected by isoform selection, suggesting ortho2tree canonicals more accurately reflect genuine biological variation. 82% of ortho2tree proposed-changes agreed with MANE; for confirmed canonicals, 92% agreed with MANE. Ortho2tree can improve canonical assignment among orthologous sequences that are >60% identical, a group that includes vertebrates and higher plants.