Emre Tunç, Vedat Durgun, Ozan Akıncı, Sefa Ergün, Osman Şimşek, Ibrahim Murat Bolayırlı, Nuray Kepil
{"title":"The role of geraniol on hepatic ischemia-reperfusion injury model in rats.","authors":"Emre Tunç, Vedat Durgun, Ozan Akıncı, Sefa Ergün, Osman Şimşek, Ibrahim Murat Bolayırlı, Nuray Kepil","doi":"10.14744/tjtes.2024.47004","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hepatic ischemia/reperfusion (I/R) injury is a significant clinical condition that can arise during liver resections, trauma, and shock. Geraniol, an isoterpene molecule commonly found in nature, possesses antioxidant and hepatoprotective properties. This study investigates the impact of geraniol on hepatic damage by inducing experimental liver I/R injury in rats.</p><p><strong>Methods: </strong>Twenty-eight male Wistar Albino rats weighing 350-400 g were utilized for this study. The rats were divided into four groups: control group, I/R group, 50 mg/kg geraniol+I/R group, and 100 mg/kg geraniol+I/R group. Ischemia times were set at 15 minutes with reperfusion times at 20 minutes. Ischemia commenced 15 minutes after geraniol administration. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactic acid were measured, along with superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity levels in liver tissues. Liver tissues were also examined histopathologically.</p><p><strong>Results: </strong>It was observed that intraperitoneal administration of 50 mg/kg and 100 mg/kg geraniol significantly reduced AST, lactic acid, and tumor necrosis factor-alpha (TNF-α) levels. The serum ALT level decreased significantly in the 50 mg/kg group, whereas no significant decrease was found in the 100 mg/kg group. SOD and GPx enzyme activities were shown to increase significantly in the 100 mg/kg group. Although there was an increase in these enzyme levels in the 50 mg/kg group, it was not statistically significant. Similarly, CAT enzyme activity increased in both the 50 mg/kg and 100 mg/kg groups, but the increase was not significant. The Suzuki score significantly decreased in both the 50 mg/kg and 100 mg/kg groups.</p><p><strong>Conclusion: </strong>The study demonstrates that geraniol reduced hepatic damage both biochemically and histopathologically and increased antioxidant defense enzymes. These findings suggest that geraniol could be used to prevent hepatic I/R injury, provided it is corroborated by large-scale and comprehensive studies.</p>","PeriodicalId":94263,"journal":{"name":"Ulusal travma ve acil cerrahi dergisi = Turkish journal of trauma & emergency surgery : TJTES","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230045/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ulusal travma ve acil cerrahi dergisi = Turkish journal of trauma & emergency surgery : TJTES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14744/tjtes.2024.47004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Hepatic ischemia/reperfusion (I/R) injury is a significant clinical condition that can arise during liver resections, trauma, and shock. Geraniol, an isoterpene molecule commonly found in nature, possesses antioxidant and hepatoprotective properties. This study investigates the impact of geraniol on hepatic damage by inducing experimental liver I/R injury in rats.
Methods: Twenty-eight male Wistar Albino rats weighing 350-400 g were utilized for this study. The rats were divided into four groups: control group, I/R group, 50 mg/kg geraniol+I/R group, and 100 mg/kg geraniol+I/R group. Ischemia times were set at 15 minutes with reperfusion times at 20 minutes. Ischemia commenced 15 minutes after geraniol administration. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactic acid were measured, along with superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity levels in liver tissues. Liver tissues were also examined histopathologically.
Results: It was observed that intraperitoneal administration of 50 mg/kg and 100 mg/kg geraniol significantly reduced AST, lactic acid, and tumor necrosis factor-alpha (TNF-α) levels. The serum ALT level decreased significantly in the 50 mg/kg group, whereas no significant decrease was found in the 100 mg/kg group. SOD and GPx enzyme activities were shown to increase significantly in the 100 mg/kg group. Although there was an increase in these enzyme levels in the 50 mg/kg group, it was not statistically significant. Similarly, CAT enzyme activity increased in both the 50 mg/kg and 100 mg/kg groups, but the increase was not significant. The Suzuki score significantly decreased in both the 50 mg/kg and 100 mg/kg groups.
Conclusion: The study demonstrates that geraniol reduced hepatic damage both biochemically and histopathologically and increased antioxidant defense enzymes. These findings suggest that geraniol could be used to prevent hepatic I/R injury, provided it is corroborated by large-scale and comprehensive studies.