Constraint-Aware Learning for Fractional Flow Reserve Pullback Curve Estimation from Invasive Coronary Imaging.

Dong Zhang, Xiujian Liu, Anbang Wang, Hongwei Zhang, Guang Yang, Heye Zhang, Zhifan Gao
{"title":"Constraint-Aware Learning for Fractional Flow Reserve Pullback Curve Estimation from Invasive Coronary Imaging.","authors":"Dong Zhang, Xiujian Liu, Anbang Wang, Hongwei Zhang, Guang Yang, Heye Zhang, Zhifan Gao","doi":"10.1109/TMI.2024.3412935","DOIUrl":null,"url":null,"abstract":"<p><p>Estimation of the fractional flow reserve (FFR) pullback curve from invasive coronary imaging is important for the intraoperative guidance of coronary intervention. Machine/deep learning has been proven effective in FFR pullback curve estimation. However, the existing methods suffer from inadequate incorporation of intrinsic geometry associations and physics knowledge. In this paper, we propose a constraint-aware learning framework to improve the estimation of the FFR pullback curve from invasive coronary imaging. It incorporates both geometrical and physical constraints to approximate the relationships between the geometric structure and FFR values along the coronary artery centerline. Our method also leverages the power of synthetic data in model training to reduce the collection costs of clinical data. Moreover, to bridge the domain gap between synthetic and real data distributions when testing on real-world imaging data, we also employ a diffusion-driven test-time data adaptation method that preserves the knowledge learned in synthetic data. Specifically, this method learns a diffusion model of the synthetic data distribution and then projects real data to the synthetic data distribution at test time. Extensive experimental studies on a synthetic dataset and a real-world dataset of 382 patients covering three imaging modalities have shown the better performance of our method for FFR estimation of stenotic coronary arteries, compared with other machine/deep learning-based FFR estimation models and computational fluid dynamics-based model. The results also provide high agreement and correlation between the FFR predictions of our method and the invasively measured FFR values. The plausibility of FFR predictions along the coronary artery centerline is also validated.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2024.3412935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Estimation of the fractional flow reserve (FFR) pullback curve from invasive coronary imaging is important for the intraoperative guidance of coronary intervention. Machine/deep learning has been proven effective in FFR pullback curve estimation. However, the existing methods suffer from inadequate incorporation of intrinsic geometry associations and physics knowledge. In this paper, we propose a constraint-aware learning framework to improve the estimation of the FFR pullback curve from invasive coronary imaging. It incorporates both geometrical and physical constraints to approximate the relationships between the geometric structure and FFR values along the coronary artery centerline. Our method also leverages the power of synthetic data in model training to reduce the collection costs of clinical data. Moreover, to bridge the domain gap between synthetic and real data distributions when testing on real-world imaging data, we also employ a diffusion-driven test-time data adaptation method that preserves the knowledge learned in synthetic data. Specifically, this method learns a diffusion model of the synthetic data distribution and then projects real data to the synthetic data distribution at test time. Extensive experimental studies on a synthetic dataset and a real-world dataset of 382 patients covering three imaging modalities have shown the better performance of our method for FFR estimation of stenotic coronary arteries, compared with other machine/deep learning-based FFR estimation models and computational fluid dynamics-based model. The results also provide high agreement and correlation between the FFR predictions of our method and the invasively measured FFR values. The plausibility of FFR predictions along the coronary artery centerline is also validated.

通过有创冠状动脉成像进行分流储备回拉曲线估算的约束感知学习
通过有创冠状动脉成像估计分数血流储备(FFR)回拉曲线对于术中指导冠状动脉介入治疗非常重要。机器/深度学习已被证明在 FFR 回抽曲线估算中非常有效。然而,现有的方法没有充分结合内在的几何关联和物理知识。在本文中,我们提出了一种约束感知学习框架,以改进有创冠状动脉成像中的 FFR 回抽曲线估计。它结合了几何约束和物理约束,以近似沿冠状动脉中心线的几何结构和 FFR 值之间的关系。我们的方法还在模型训练中利用了合成数据的力量,以降低临床数据的收集成本。此外,在真实世界的成像数据上进行测试时,为了弥合合成数据和真实数据分布之间的领域差距,我们还采用了一种扩散驱动的测试时间数据适应方法,以保留在合成数据中学到的知识。具体来说,该方法学习合成数据分布的扩散模型,然后在测试时将真实数据投射到合成数据分布上。在合成数据集和 382 位患者的真实数据集上进行的广泛实验研究表明,与其他基于机器/深度学习的 FFR 估算模型和基于计算流体力学的模型相比,我们的方法在狭窄冠状动脉的 FFR 估算方面具有更好的性能。结果还表明,我们的方法预测的 FFR 值与有创测量的 FFR 值之间具有很高的一致性和相关性。沿冠状动脉中心线预测 FFR 的合理性也得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信