Mercedes Di Bernardo, Victoria L León Guerrero, Jacob C Sutoski, William Rod Hardy, Lesley T MacNeil
{"title":"SHC-3: a previously unidentified C. elegans Shc family member functions in the insulin-like signaling pathway to enhance survival during L1 arrest.","authors":"Mercedes Di Bernardo, Victoria L León Guerrero, Jacob C Sutoski, William Rod Hardy, Lesley T MacNeil","doi":"10.1093/genetics/iyae093","DOIUrl":null,"url":null,"abstract":"<p><p>Shc (Src homologous and collagen) proteins function in many different signaling pathways where they mediate phosphorylation-dependent protein-protein interactions. These proteins are characterized by the presence of two phosphotyrosine-binding domains, an N-terminal PTB and a C-terminal SH2. We describe a previously unrecognized Caenorhabditis elegans Shc gene, shc-3 and characterize its role in stress response. Both shc-3 and shc-1 are required for long-term survival in L1 arrest and survival in heat stress, however, they do not act redundantly but rather play distinct roles in these processes. Loss of shc-3 did not further decrease survival of daf-16 mutants in L1 arrest, suggesting that like SHC-1, SHC-3 functions in the insulin-like signaling pathway. In the absence of SHC-3, DAF-16 nuclear entry and exit are slowed, suggesting that SHC-3 is required for rapid changes in DAF-16 signaling.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630764/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyae093","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Shc (Src homologous and collagen) proteins function in many different signaling pathways where they mediate phosphorylation-dependent protein-protein interactions. These proteins are characterized by the presence of two phosphotyrosine-binding domains, an N-terminal PTB and a C-terminal SH2. We describe a previously unrecognized Caenorhabditis elegans Shc gene, shc-3 and characterize its role in stress response. Both shc-3 and shc-1 are required for long-term survival in L1 arrest and survival in heat stress, however, they do not act redundantly but rather play distinct roles in these processes. Loss of shc-3 did not further decrease survival of daf-16 mutants in L1 arrest, suggesting that like SHC-1, SHC-3 functions in the insulin-like signaling pathway. In the absence of SHC-3, DAF-16 nuclear entry and exit are slowed, suggesting that SHC-3 is required for rapid changes in DAF-16 signaling.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.