Carolina Del-Valle-Soto, Ramon A Briseño, Leonardo J Valdivia, Juan Arturo Nolazco-Flores
{"title":"Unveiling wearables: exploring the global landscape of biometric applications and vital signs and behavioral impact.","authors":"Carolina Del-Valle-Soto, Ramon A Briseño, Leonardo J Valdivia, Juan Arturo Nolazco-Flores","doi":"10.1186/s13040-024-00368-y","DOIUrl":null,"url":null,"abstract":"<p><p>The development of neuroscientific techniques enabling the recording of brain and peripheral nervous system activity has fueled research in cognitive science. Recent technological advancements offer new possibilities for inducing behavioral change, particularly through cost-effective Internet-based interventions. However, limitations in laboratory equipment volume have hindered the generalization of results to real-life contexts. The advent of Internet of Things (IoT) devices, such as wearables, equipped with sensors and microchips, has ushered in a new era in behavior change techniques. Wearables, including smartwatches, electronic tattoos, and more, are poised for massive adoption, with an expected annual growth rate of 55% over the next five years. These devices enable personalized instructions, leading to increased productivity and efficiency, particularly in industrial production. Additionally, the healthcare sector has seen a significant demand for wearables, with over 80% of global consumers willing to use them for health monitoring. This research explores the primary biometric applications of wearables and their impact on users' well-being, focusing on the integration of behavior change techniques facilitated by IoT devices. Wearables have revolutionized health monitoring by providing real-time feedback, personalized interventions, and gamification. They encourage positive behavior changes by delivering immediate feedback, tailored recommendations, and gamified experiences, leading to sustained improvements in health. Furthermore, wearables seamlessly integrate with digital platforms, enhancing their impact through social support and connectivity. However, privacy and data security concerns must be addressed to maintain users' trust. As technology continues to advance, the refinement of IoT devices' design and functionality is crucial for promoting behavior change and improving health outcomes. This study aims to investigate the effects of behavior change techniques facilitated by wearables on individuals' health outcomes and the role of wearables in promoting a healthier lifestyle.</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11165804/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-024-00368-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of neuroscientific techniques enabling the recording of brain and peripheral nervous system activity has fueled research in cognitive science. Recent technological advancements offer new possibilities for inducing behavioral change, particularly through cost-effective Internet-based interventions. However, limitations in laboratory equipment volume have hindered the generalization of results to real-life contexts. The advent of Internet of Things (IoT) devices, such as wearables, equipped with sensors and microchips, has ushered in a new era in behavior change techniques. Wearables, including smartwatches, electronic tattoos, and more, are poised for massive adoption, with an expected annual growth rate of 55% over the next five years. These devices enable personalized instructions, leading to increased productivity and efficiency, particularly in industrial production. Additionally, the healthcare sector has seen a significant demand for wearables, with over 80% of global consumers willing to use them for health monitoring. This research explores the primary biometric applications of wearables and their impact on users' well-being, focusing on the integration of behavior change techniques facilitated by IoT devices. Wearables have revolutionized health monitoring by providing real-time feedback, personalized interventions, and gamification. They encourage positive behavior changes by delivering immediate feedback, tailored recommendations, and gamified experiences, leading to sustained improvements in health. Furthermore, wearables seamlessly integrate with digital platforms, enhancing their impact through social support and connectivity. However, privacy and data security concerns must be addressed to maintain users' trust. As technology continues to advance, the refinement of IoT devices' design and functionality is crucial for promoting behavior change and improving health outcomes. This study aims to investigate the effects of behavior change techniques facilitated by wearables on individuals' health outcomes and the role of wearables in promoting a healthier lifestyle.
期刊介绍:
BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data.
Topical areas include, but are not limited to:
-Development, evaluation, and application of novel data mining and machine learning algorithms.
-Adaptation, evaluation, and application of traditional data mining and machine learning algorithms.
-Open-source software for the application of data mining and machine learning algorithms.
-Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies.
-Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.