Comprehensive Proteogenomic Profiling Reveals the Molecular Characteristics of Colorectal Cancer at Distinct Stages of Progression.

IF 12.5 1区 医学 Q1 ONCOLOGY
Lingling Li, Dongxian Jiang, Hui Liu, Chunmei Guo, Qiao Zhang, Xuedong Li, Xiaojian Chen, Zheqi Chen, Jinwen Feng, Subei Tan, Wen Huang, Jie Huang, Chen Xu, Chen-Ying Liu, Wei Yu, Yingyong Hou, Chen Ding
{"title":"Comprehensive Proteogenomic Profiling Reveals the Molecular Characteristics of Colorectal Cancer at Distinct Stages of Progression.","authors":"Lingling Li, Dongxian Jiang, Hui Liu, Chunmei Guo, Qiao Zhang, Xuedong Li, Xiaojian Chen, Zheqi Chen, Jinwen Feng, Subei Tan, Wen Huang, Jie Huang, Chen Xu, Chen-Ying Liu, Wei Yu, Yingyong Hou, Chen Ding","doi":"10.1158/0008-5472.CAN-23-1878","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer is the second most common malignant tumor worldwide. Analysis of the changes that occur during colorectal cancer progression could provide insights into the molecular mechanisms driving colorectal cancer development and identify improved treatment strategies. In this study, we performed an integrated multiomic analysis of 435 trace tumor samples from 148 patients with colorectal cancer, covering nontumor, intraepithelial neoplasia (IEN), infiltration, and advanced stage colorectal cancer phases. Proteogenomic analyses demonstrated that KRAS and BRAF mutations were mutually exclusive and elevated oxidative phosphorylation in the IEN phase. Chr17q loss and chr20q gain were also mutually exclusive, which occurred predominantly in the IEN and infiltration phases, respectively, and impacted the cell cycle. Mutations in TP53 were frequent in the advanced stage colorectal cancer phase and associated with the tumor microenvironment, including increased extracellular matrix rigidity and stromal infiltration. Analysis of the profiles of colorectal cancer based on consensus molecular subtype and colorectal cancer intrinsic subtype classifications revealed the progression paths of each subtype and indicated that microsatellite instability was associated with specific subtype classifications. Additional comparison of molecular characteristics of colorectal cancer based on location showed that ANKRD22 amplification by chr10q23.31 gain enhanced glycolysis in the right-sided colorectal cancer. The AOM/DSS-induced colorectal cancer carcinogenesis mouse model indicated that DDX5 deletion due to chr17q loss promoted colorectal cancer development, consistent with the findings from the patient samples. Collectively, this study provides an informative resource for understanding the driving events of different stages of colorectal cancer and identifying the potential therapeutic targets. Significance: Characterization of the proteogenomic landscape of colorectal cancer during progression provides a multiomic map detailing the alterations in each stage of carcinogenesis and suggesting potential diagnostic and therapeutic approaches for patients.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":null,"pages":null},"PeriodicalIF":12.5000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11372369/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.CAN-23-1878","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Colorectal cancer is the second most common malignant tumor worldwide. Analysis of the changes that occur during colorectal cancer progression could provide insights into the molecular mechanisms driving colorectal cancer development and identify improved treatment strategies. In this study, we performed an integrated multiomic analysis of 435 trace tumor samples from 148 patients with colorectal cancer, covering nontumor, intraepithelial neoplasia (IEN), infiltration, and advanced stage colorectal cancer phases. Proteogenomic analyses demonstrated that KRAS and BRAF mutations were mutually exclusive and elevated oxidative phosphorylation in the IEN phase. Chr17q loss and chr20q gain were also mutually exclusive, which occurred predominantly in the IEN and infiltration phases, respectively, and impacted the cell cycle. Mutations in TP53 were frequent in the advanced stage colorectal cancer phase and associated with the tumor microenvironment, including increased extracellular matrix rigidity and stromal infiltration. Analysis of the profiles of colorectal cancer based on consensus molecular subtype and colorectal cancer intrinsic subtype classifications revealed the progression paths of each subtype and indicated that microsatellite instability was associated with specific subtype classifications. Additional comparison of molecular characteristics of colorectal cancer based on location showed that ANKRD22 amplification by chr10q23.31 gain enhanced glycolysis in the right-sided colorectal cancer. The AOM/DSS-induced colorectal cancer carcinogenesis mouse model indicated that DDX5 deletion due to chr17q loss promoted colorectal cancer development, consistent with the findings from the patient samples. Collectively, this study provides an informative resource for understanding the driving events of different stages of colorectal cancer and identifying the potential therapeutic targets. Significance: Characterization of the proteogenomic landscape of colorectal cancer during progression provides a multiomic map detailing the alterations in each stage of carcinogenesis and suggesting potential diagnostic and therapeutic approaches for patients.

综合蛋白质基因组剖析揭示结直肠癌不同进展阶段的分子特征
结肠直肠癌(CRC)是全球第二大常见恶性肿瘤。对 CRC 进展过程中发生的变化进行分析,可以深入了解驱动 CRC 发展的分子机制,并确定更好的治疗策略。在此,我们对来自 148 名结直肠癌(CRC)患者的 435 份痕量肿瘤样本进行了多组学综合分析,涵盖了非肿瘤(NT)、上皮内瘤变(IEN)、浸润(IFT)和晚期 CRC(A-CRC)阶段。蛋白质组学分析表明,KRAS和BRAF突变是互斥的,在IEN期氧化磷酸化升高。Chr17q 缺失和 chr20q 增益也是互斥的,分别主要发生在 IEN 期和 IFT 期,并影响细胞周期。TP53突变在A-CRC期很常见,与肿瘤微环境有关,包括细胞外基质刚性增加和基质浸润。根据CMS和CRIS分类对CRC的特征进行分析,揭示了每种亚型的进展路径,并表明微卫星不稳定性与特定的亚型分类有关。根据位置对 CRC 分子特征进行的其他比较显示,chr10q23.31增益导致的 ANKRD22 扩增增强了右侧 CRC 的糖酵解作用。AOM/DSS诱导的小鼠CRC癌变模型表明,chr17q缺失导致的DDX5缺失促进了CRC的发展,这与患者样本的研究结果一致。总之,这项研究为了解 CRC 不同阶段的驱动事件和确定潜在的治疗靶点提供了信息资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer research
Cancer research 医学-肿瘤学
CiteScore
16.10
自引率
0.90%
发文量
7677
审稿时长
2.5 months
期刊介绍: Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research. With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445. Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信