The enduring metabolic improvement of combining dual amylin and calcitonin receptor agonist and semaglutide treatments in a rat model of obesity and diabetes.
Anna Thorsø Larsen, Khaled Elhady Mohamed, Simone Anna Melander, Morten Asser Karsdal, Kim Henriksen
{"title":"The enduring metabolic improvement of combining dual amylin and calcitonin receptor agonist and semaglutide treatments in a rat model of obesity and diabetes.","authors":"Anna Thorsø Larsen, Khaled Elhady Mohamed, Simone Anna Melander, Morten Asser Karsdal, Kim Henriksen","doi":"10.1152/ajpendo.00092.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Long-acting dual amylin and calcitonin receptor agonists (DACRAs) are novel candidates for the treatment of type 2 diabetes and obesity due to their beneficial effects on body weight, glucose control, and insulin action. However, how the metabolic benefits are maintained after long-lasting treatment is unknown. This study investigates the long-term anti-obesity and anti-diabetic treatment efficacy of the DACRA KBP-336 alone and combined with the GLP-1 analog semaglutide. Zucker diabetic Sprague Dawley (ZDSD) rats with obesity and diabetes received KBP-336 (4.5 nmol/kg Q3D), semaglutide (50 nmol/kg Q3D), or the combination for 7 mo, and the treatment impact on body weight, food intake, glucose control, and insulin action was evaluated. Furthermore, serum levels of the cardiac fibrosis biomarker endotrophin were evaluated. KBP-336, semaglutide, and the combination lowered body weight significantly compared with the vehicle, with the combination inducing a larger and more sustained weight loss than either monotherapy. All treatments resulted in reduced fasting blood glucose levels and HbA1c levels and improved glucose tolerance compared with vehicle-treated rats. Furthermore, all treatments protected against lost insulin secretory capacity and improved insulin action. Serum levels of endotrophin were significantly lowered by KBP-336 compared with vehicle. This study shows the benefit of combining KBP-336 and semaglutide to obtain significant and sustained weight loss, as well as improved glucose control. Furthermore, KBP-336-driven reductions in circulating endotrophin indicate a clear reduction in the risk of complications. Altogether, KBP-336 is a promising candidate for the treatment of obesity and type 2 diabetes both alone and in combination with GLP-1 analogs.<b>NEW & NOTEWORTHY</b> These studies describe the benefit of combining dual amylin and calcitonin receptor agonists (DACRA) with semaglutide for long-term treatment of obesity and type 2 diabetes. Combination treatment induced sustained weight loss and improved glucose control. A DACRA-driven reduction in a serological biomarker of cardiac fibrosis indicated a reduced risk of complications. These results highlight DACRAs as a promising candidate for combination treatment of obesity and type 2 diabetes and related long-term complications.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E145-E154"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Endocrinology and metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpendo.00092.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Long-acting dual amylin and calcitonin receptor agonists (DACRAs) are novel candidates for the treatment of type 2 diabetes and obesity due to their beneficial effects on body weight, glucose control, and insulin action. However, how the metabolic benefits are maintained after long-lasting treatment is unknown. This study investigates the long-term anti-obesity and anti-diabetic treatment efficacy of the DACRA KBP-336 alone and combined with the GLP-1 analog semaglutide. Zucker diabetic Sprague Dawley (ZDSD) rats with obesity and diabetes received KBP-336 (4.5 nmol/kg Q3D), semaglutide (50 nmol/kg Q3D), or the combination for 7 mo, and the treatment impact on body weight, food intake, glucose control, and insulin action was evaluated. Furthermore, serum levels of the cardiac fibrosis biomarker endotrophin were evaluated. KBP-336, semaglutide, and the combination lowered body weight significantly compared with the vehicle, with the combination inducing a larger and more sustained weight loss than either monotherapy. All treatments resulted in reduced fasting blood glucose levels and HbA1c levels and improved glucose tolerance compared with vehicle-treated rats. Furthermore, all treatments protected against lost insulin secretory capacity and improved insulin action. Serum levels of endotrophin were significantly lowered by KBP-336 compared with vehicle. This study shows the benefit of combining KBP-336 and semaglutide to obtain significant and sustained weight loss, as well as improved glucose control. Furthermore, KBP-336-driven reductions in circulating endotrophin indicate a clear reduction in the risk of complications. Altogether, KBP-336 is a promising candidate for the treatment of obesity and type 2 diabetes both alone and in combination with GLP-1 analogs.NEW & NOTEWORTHY These studies describe the benefit of combining dual amylin and calcitonin receptor agonists (DACRA) with semaglutide for long-term treatment of obesity and type 2 diabetes. Combination treatment induced sustained weight loss and improved glucose control. A DACRA-driven reduction in a serological biomarker of cardiac fibrosis indicated a reduced risk of complications. These results highlight DACRAs as a promising candidate for combination treatment of obesity and type 2 diabetes and related long-term complications.
期刊介绍:
The American Journal of Physiology-Endocrinology and Metabolism publishes original, mechanistic studies on the physiology of endocrine and metabolic systems. Physiological, cellular, and molecular studies in whole animals or humans will be considered. Specific themes include, but are not limited to, mechanisms of hormone and growth factor action; hormonal and nutritional regulation of metabolism, inflammation, microbiome and energy balance; integrative organ cross talk; paracrine and autocrine control of endocrine cells; function and activation of hormone receptors; endocrine or metabolic control of channels, transporters, and membrane function; temporal analysis of hormone secretion and metabolism; and mathematical/kinetic modeling of metabolism. Novel molecular, immunological, or biophysical studies of hormone action are also welcome.