Tobias Harren, Torben Gutermuth, Christoph Grebner, Gerhard Hessler, Matthias Rarey
{"title":"Modern machine-learning for binding affinity estimation of protein–ligand complexes: Progress, opportunities, and challenges","authors":"Tobias Harren, Torben Gutermuth, Christoph Grebner, Gerhard Hessler, Matthias Rarey","doi":"10.1002/wcms.1716","DOIUrl":null,"url":null,"abstract":"<p>Structure-based drug design is a widely applied approach in the discovery of new lead compounds for known therapeutic targets. In most structure-based drug design applications, the docking procedure is considered the crucial step. Here, a potential ligand is fitted into the binding site, and a scoring function assesses its binding capability. With the rise of modern machine-learning in drug discovery, novel scoring functions using machine-learning techniques achieved significant performance gains in virtual screening and ligand optimization tasks on retrospective data. However, real-world applications of these methods are still limited. Missing success stories in prospective applications are one reason for this. Additionally, the fast-evolving nature of the field makes it challenging to assess the advantages of each individual method. This review will highlight recent strides toward improved real world applicability of machine-learning based scoring, enabling a better understanding of the potential benefits and pitfalls of these functions on a project. Furthermore, a systematic way of classifying machine-learning based scoring that facilitates comparisons will be presented.</p><p>This article is categorized under:\n </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"14 3","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.1716","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1716","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Structure-based drug design is a widely applied approach in the discovery of new lead compounds for known therapeutic targets. In most structure-based drug design applications, the docking procedure is considered the crucial step. Here, a potential ligand is fitted into the binding site, and a scoring function assesses its binding capability. With the rise of modern machine-learning in drug discovery, novel scoring functions using machine-learning techniques achieved significant performance gains in virtual screening and ligand optimization tasks on retrospective data. However, real-world applications of these methods are still limited. Missing success stories in prospective applications are one reason for this. Additionally, the fast-evolving nature of the field makes it challenging to assess the advantages of each individual method. This review will highlight recent strides toward improved real world applicability of machine-learning based scoring, enabling a better understanding of the potential benefits and pitfalls of these functions on a project. Furthermore, a systematic way of classifying machine-learning based scoring that facilitates comparisons will be presented.
期刊介绍:
Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.