QMix: An Efficient Program to Automatically Estimate Multi-Matrix Mixture Models for Amino Acid Substitution Process.

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS
Journal of Computational Biology Pub Date : 2024-08-01 Epub Date: 2024-06-11 DOI:10.1089/cmb.2023.0403
Nguyen Huy Tinh, Cuong Cao Dang, Le Sy Vinh
{"title":"QMix: An Efficient Program to Automatically Estimate Multi-Matrix Mixture Models for Amino Acid Substitution Process.","authors":"Nguyen Huy Tinh, Cuong Cao Dang, Le Sy Vinh","doi":"10.1089/cmb.2023.0403","DOIUrl":null,"url":null,"abstract":"<p><p>The single-matrix amino acid (AA) substitution models are widely used in phylogenetic analyses; however, they are unable to properly model the heterogeneity of AA substitution rates among sites. The multi-matrix mixture models can handle the site rate heterogeneity and outperform the single-matrix models. Estimating multi-matrix mixture models is a complex process and no computer program is available for this task. In this study, we implemented a computer program of the so-called QMix based on the algorithm of LG4X and LG4M with several enhancements to automatically estimate multi-matrix mixture models from large datasets. QMix employs QMaker algorithm instead of XRATE algorithm to accurately and rapidly estimate the parameters of models. It is able to estimate mixture models with different number of matrices and supports multi-threading computing to efficiently estimate models from thousands of genes. We re-estimate mixture models LG4X and LG4M from 1471 HSSP alignments. The re-estimated models (HP4X and HP4M) are slightly better than LG4X and LG4M in building maximum likelihood trees from HSSP and TreeBASE datasets. QMix program required about 10 hours on a computer with 18 cores to estimate a mixture model with four matrices from 200 HSSP alignments. It is easy to use and freely available for researchers.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":"703-707"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2023.0403","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/11 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The single-matrix amino acid (AA) substitution models are widely used in phylogenetic analyses; however, they are unable to properly model the heterogeneity of AA substitution rates among sites. The multi-matrix mixture models can handle the site rate heterogeneity and outperform the single-matrix models. Estimating multi-matrix mixture models is a complex process and no computer program is available for this task. In this study, we implemented a computer program of the so-called QMix based on the algorithm of LG4X and LG4M with several enhancements to automatically estimate multi-matrix mixture models from large datasets. QMix employs QMaker algorithm instead of XRATE algorithm to accurately and rapidly estimate the parameters of models. It is able to estimate mixture models with different number of matrices and supports multi-threading computing to efficiently estimate models from thousands of genes. We re-estimate mixture models LG4X and LG4M from 1471 HSSP alignments. The re-estimated models (HP4X and HP4M) are slightly better than LG4X and LG4M in building maximum likelihood trees from HSSP and TreeBASE datasets. QMix program required about 10 hours on a computer with 18 cores to estimate a mixture model with four matrices from 200 HSSP alignments. It is easy to use and freely available for researchers.

QMix:自动估算氨基酸替代过程多矩阵混合物模型的高效程序
单矩阵氨基酸(AA)替换模型被广泛应用于系统发育分析中,但它们无法正确模拟不同位点间 AA 替换率的异质性。多矩阵混合模型可以处理位点率异质性,其效果优于单矩阵模型。估计多矩阵混合模型是一个复杂的过程,目前还没有计算机程序可以完成这项任务。在本研究中,我们在 LG4X 和 LG4M 算法的基础上进行了一些改进,实现了所谓的 QMix 计算机程序,可以从大型数据集中自动估计多矩阵混合模型。QMix 采用 QMaker 算法而不是 XRATE 算法来准确、快速地估计模型参数。它能估计不同矩阵数的混合模型,并支持多线程计算,能从数千个基因中高效地估计模型。我们从 1471 个 HSSP 对齐中重新估计了混合模型 LG4X 和 LG4M。在从 HSSP 和 TreeBASE 数据集构建最大似然树方面,重新估计的模型(HP4X 和 HP4M)略优于 LG4X 和 LG4M。QMix 程序需要在一台有 18 个内核的计算机上运行约 10 个小时,才能从 200 个 HSSP 数据集中估计出一个有四个矩阵的混合模型。它易于使用,可供研究人员免费使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Biology
Journal of Computational Biology 生物-计算机:跨学科应用
CiteScore
3.60
自引率
5.90%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics. Journal of Computational Biology coverage includes: -Genomics -Mathematical modeling and simulation -Distributed and parallel biological computing -Designing biological databases -Pattern matching and pattern detection -Linking disparate databases and data -New tools for computational biology -Relational and object-oriented database technology for bioinformatics -Biological expert system design and use -Reasoning by analogy, hypothesis formation, and testing by machine -Management of biological databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信