Piezo1 inhibitor isoquercitrin rescues neural impairment mediated by NLRP3 after intracerebral hemorrhage

IF 4.6 2区 医学 Q1 NEUROSCIENCES
Tingwang Guo , Gang Chen , Lin Yang , Jia Deng , Yun Pan
{"title":"Piezo1 inhibitor isoquercitrin rescues neural impairment mediated by NLRP3 after intracerebral hemorrhage","authors":"Tingwang Guo ,&nbsp;Gang Chen ,&nbsp;Lin Yang ,&nbsp;Jia Deng ,&nbsp;Yun Pan","doi":"10.1016/j.expneurol.2024.114852","DOIUrl":null,"url":null,"abstract":"<div><p>In intracerebral hemorrhage (ICH), the mechanical brain injury is a considerable and indispensable factor determining the neurological functions and poor outcomes. Previous studies indicate the mechanically gated ion channel-Piezo1 can transduce mechanical effects following ICH. Isoquercitrin (ISQ) is a well-studied ion channel inhibitor. Furthermore, whether the following Piezo1-mediated neurological impairment can be ameliorated by ISQ remains unclear. Herein, we constructed the hydrostatic pressure model and ICH rat model. Firstly, we found that Piezo1 agonists Yoda1 and Jedi1 facilitated extracellular calcium influx dramatically, but ISQ could depress intracellular Ca<sup>2+</sup> overload under hydrostatic pressure in primary neurons. Then we detected the expression profile of Piezo1, NLRP3 and NF-κB p-p65 after ICH, and found that the expression of Piezo1 was much earlier than NLRP3 and NF-κB p-p65. Furthermore, by western blot and immunofluorescence, ISQ decreased the expression of Piezo1 and NLRP3 dramatically like GsMTx4, but Nigericin as a NLRP3 agonist failed to affect Piezo1. Besides, both ISQ and interfering Piezo1 suppressed the upregulated caspase-1, NF-κB p-p65, p-IκBα, Tunel-positive cells and inflammatory factors (IL-1β, IL-6 and TNF-α) in ICH. At last, the hydrostatic pressure or hematoma induced disturbed neural viability, disordered neural cytomorphology, and increased neurobehavioral and cognitive deficits, but they were improved by ISQ and GsMTx4 strongly. Therefore, ISQ could alleviate neurological injuries induced by Piezo1 via NLRP3 pathway. These observations indicated that Piezos might be the new therapeutic targets, and blocking Piezos/NLRP3 pathway by ISQ could be an auspicious strategy for the treatment of ICH.</p></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001448862400178X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In intracerebral hemorrhage (ICH), the mechanical brain injury is a considerable and indispensable factor determining the neurological functions and poor outcomes. Previous studies indicate the mechanically gated ion channel-Piezo1 can transduce mechanical effects following ICH. Isoquercitrin (ISQ) is a well-studied ion channel inhibitor. Furthermore, whether the following Piezo1-mediated neurological impairment can be ameliorated by ISQ remains unclear. Herein, we constructed the hydrostatic pressure model and ICH rat model. Firstly, we found that Piezo1 agonists Yoda1 and Jedi1 facilitated extracellular calcium influx dramatically, but ISQ could depress intracellular Ca2+ overload under hydrostatic pressure in primary neurons. Then we detected the expression profile of Piezo1, NLRP3 and NF-κB p-p65 after ICH, and found that the expression of Piezo1 was much earlier than NLRP3 and NF-κB p-p65. Furthermore, by western blot and immunofluorescence, ISQ decreased the expression of Piezo1 and NLRP3 dramatically like GsMTx4, but Nigericin as a NLRP3 agonist failed to affect Piezo1. Besides, both ISQ and interfering Piezo1 suppressed the upregulated caspase-1, NF-κB p-p65, p-IκBα, Tunel-positive cells and inflammatory factors (IL-1β, IL-6 and TNF-α) in ICH. At last, the hydrostatic pressure or hematoma induced disturbed neural viability, disordered neural cytomorphology, and increased neurobehavioral and cognitive deficits, but they were improved by ISQ and GsMTx4 strongly. Therefore, ISQ could alleviate neurological injuries induced by Piezo1 via NLRP3 pathway. These observations indicated that Piezos might be the new therapeutic targets, and blocking Piezos/NLRP3 pathway by ISQ could be an auspicious strategy for the treatment of ICH.

Piezo1抑制剂异槲皮素能挽救脑出血后由NLRP3介导的神经损伤。
在脑出血(ICH)中,机械性脑损伤是决定神经功能和不良预后的不可或缺的重要因素。先前的研究表明,机械门控离子通道-Piezo1 可以转导 ICH 后的机械效应。异槲皮素(ISQ)是一种经过深入研究的离子通道抑制剂。此外,ISQ 是否能改善 Piezo1 介导的神经损伤仍不清楚。在此,我们构建了静水压模型和 ICH 大鼠模型。首先,我们发现 Piezo1 激动剂 Yoda1 和 Jedi1 能显著促进细胞外钙离子的流入,但 ISQ 能抑制原发性神经元在静水压下的细胞内 Ca2+ 超载。然后,我们检测了 ICH 后 Piezo1、NLRP3 和 NF-κB p-p65 的表达谱,发现 Piezo1 的表达远早于 NLRP3 和 NF-κB p-p65。此外,通过 Western 印迹和免疫荧光,ISQ 与 GsMTx4 一样显著降低了 Piezo1 和 NLRP3 的表达,但作为 NLRP3 激动剂的尼日利辛却对 Piezo1 没有影响。此外,ISQ和干扰Piezo1都抑制了ICH中上调的caspase-1、NF-κB p-p65、p-IκBα、Tunel阳性细胞和炎症因子(IL-1β、IL-6和TNF-α)。最后,静水压或血肿导致神经活力紊乱、神经细胞形态失调、神经行为和认知障碍增加,但ISQ和GsMTx4可有力地改善这些症状。因此,ISQ可以通过NLRP3通路缓解Piezo1诱导的神经损伤。这些观察结果表明,Piezos可能是新的治疗靶点,而通过ISQ阻断Piezos/NLRP3通路可能是治疗ICH的良策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experimental Neurology
Experimental Neurology 医学-神经科学
CiteScore
10.10
自引率
3.80%
发文量
258
审稿时长
42 days
期刊介绍: Experimental Neurology, a Journal of Neuroscience Research, publishes original research in neuroscience with a particular emphasis on novel findings in neural development, regeneration, plasticity and transplantation. The journal has focused on research concerning basic mechanisms underlying neurological disorders.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信