Prediction of stable nanoscale skyrmions in monolayer Fe5GeTe2

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
Dongzhe Li, Soumyajyoti Haldar, Leo Kollwitz, Hendrik Schrautzer, Moritz A. Goerzen, Stefan Heinze
{"title":"Prediction of stable nanoscale skyrmions in monolayer Fe5GeTe2","authors":"Dongzhe Li, Soumyajyoti Haldar, Leo Kollwitz, Hendrik Schrautzer, Moritz A. Goerzen, Stefan Heinze","doi":"10.1103/physrevb.109.l220404","DOIUrl":null,"url":null,"abstract":"Using first-principles calculations and atomistic spin simulations, we predict stable isolated skyrmions with a diameter below 10 nm in a monolayer of the two-dimensional van der Waals ferromagnet <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Fe</mi><mn>5</mn></msub><msub><mi>GeTe</mi><mn>2</mn></msub></mrow></math>, a material of significant experimental interest. A very large Dzyaloshinskii-Moriya interaction (DMI) is observed due to the intrinsic broken inversion symmetry and strong spin-orbit coupling for monolayer <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Fe</mi><mn>5</mn></msub><msub><mi>GeTe</mi><mn>2</mn></msub></mrow></math>. We show that the nearest-neighbor approximation, often used in the literature, fails to describe the DMI. The strong DMI together with moderate in-plane magnetocrystalline anisotropy energy allows to stabilize nanoscale skyrmions in out-of-plane magnetic fields above <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>≈</mo><mn>2</mn></mrow></math> T. The energy barriers of skyrmions in monolayer <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Fe</mi><mn>5</mn></msub><msub><mi>GeTe</mi><mn>2</mn></msub></mrow></math> are comparable to those of state-of-the-art transition-metal ultrathin films. We further predict that these nanoscale skyrmions can be stable for hours at temperatures up to 20 K.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"9 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.109.l220404","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Using first-principles calculations and atomistic spin simulations, we predict stable isolated skyrmions with a diameter below 10 nm in a monolayer of the two-dimensional van der Waals ferromagnet Fe5GeTe2, a material of significant experimental interest. A very large Dzyaloshinskii-Moriya interaction (DMI) is observed due to the intrinsic broken inversion symmetry and strong spin-orbit coupling for monolayer Fe5GeTe2. We show that the nearest-neighbor approximation, often used in the literature, fails to describe the DMI. The strong DMI together with moderate in-plane magnetocrystalline anisotropy energy allows to stabilize nanoscale skyrmions in out-of-plane magnetic fields above 2 T. The energy barriers of skyrmions in monolayer Fe5GeTe2 are comparable to those of state-of-the-art transition-metal ultrathin films. We further predict that these nanoscale skyrmions can be stable for hours at temperatures up to 20 K.

Abstract Image

预测单层 Fe5GeTe2 中稳定的纳米级天弧
利用第一性原理计算和原子自旋模拟,我们预测了二维范德华铁磁体 Fe5GeTe2 单层中直径小于 10 纳米的稳定孤立天元。由于单层 Fe5GeTe2 固有的破反对称性和强自旋轨道耦合,我们观察到了非常大的 Dzyaloshinskii-Moriya 相互作用(DMI)。我们的研究表明,文献中常用的近邻近似无法描述 DMI。单层 Fe5GeTe2 中天崩地裂的能障与最先进的过渡金属超薄薄膜的能障相当。我们进一步预测,这些纳米级的天幕能在高达 20 K 的温度下稳定存在数小时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信