Random Change-Point Non-linear Mixed Effects Model for left-censored longitudinal data: An application to HIV surveillance.

Binod Manandhar, Hongbin Zhang
{"title":"Random Change-Point Non-linear Mixed Effects Model for left-censored longitudinal data: An application to HIV surveillance.","authors":"Binod Manandhar, Hongbin Zhang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>A change-point model is essential in longitudinal data to infer an individual specific time to an event that induces a change of trend. However, in general, change points are not known for population-based data. We present an unknown change-point model that fits the linear and non-linear mixed effects for pre- and post-change points. We address the left-censored observations. Through stochastic approximation expectation maximization (SAEM) with the Metropolis Hasting sampler, we fit a random change-point non-linear mixed effects model. We apply our method on the longitudinal viral load (VL) data reported to the HIV surveillance registry from New York City.</p>","PeriodicalId":87345,"journal":{"name":"Proceedings. American Statistical Association. Annual Meeting","volume":"2021 ","pages":"1320-1327"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11162255/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. American Statistical Association. Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A change-point model is essential in longitudinal data to infer an individual specific time to an event that induces a change of trend. However, in general, change points are not known for population-based data. We present an unknown change-point model that fits the linear and non-linear mixed effects for pre- and post-change points. We address the left-censored observations. Through stochastic approximation expectation maximization (SAEM) with the Metropolis Hasting sampler, we fit a random change-point non-linear mixed effects model. We apply our method on the longitudinal viral load (VL) data reported to the HIV surveillance registry from New York City.

左删失纵向数据的随机变化点非线性混合效应模型:应用于艾滋病监测。
在纵向数据中,变化点模型对于推断引起趋势变化的事件发生的具体时间至关重要。然而,一般来说,人口数据的变化点是未知的。我们提出了一种未知变化点模型,它可以拟合变化点前后的线性和非线性混合效应。我们解决了左删失观测值的问题。通过使用 Metropolis Hasting 采样器的随机近似期望最大化(SAEM),我们拟合了随机变化点非线性混合效应模型。我们将这一方法应用于向纽约市 HIV 监测登记处报告的纵向病毒载量 (VL) 数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信