ExGenet, Integrating Design of Experiments and Response Surface Methodology for Cancer Gene Detection in Gene Regulatory Networks.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Cancer Informatics Pub Date : 2024-06-06 eCollection Date: 2024-01-01 DOI:10.1177/11769351241255645
Mahboube Ayoubi, Babak Teimourpour, Alireza Hassanzadeh
{"title":"ExGenet, Integrating Design of Experiments and Response Surface Methodology for Cancer Gene Detection in Gene Regulatory Networks.","authors":"Mahboube Ayoubi, Babak Teimourpour, Alireza Hassanzadeh","doi":"10.1177/11769351241255645","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Network analysis techniques often require tuning hyperparameters for optimal performance. For instance, the independent cascade model necessitates determining the probability of diffusion. Despite its importance, a consensus on effective parameter adjustment remains elusive.</p><p><strong>Methods: </strong>In this study, we propose a novel approach utilizing experimental design methodologies, specifically 2-Factorial Analysis for Screening, and Response Surface Methodology (RSM) for parameter adjustment. We apply this methodology to the task of detecting cancer driver genes in colorectal cancer.</p><p><strong>Result: </strong>Through experimental validation of colorectal cancer data, we demonstrate the effectiveness of our proposed methodology. Compared with existing methods, our approach offers several advantages, including reduced computational overhead, systematic parameter selection grounded in statistical theory, and improved performance in detecting cancer driver genes.</p><p><strong>Conclusion: </strong>This study presents a significant advancement in the field of network analysis by providing a practical and systematic approach to hyperparameter tuning. By optimizing parameter settings, our methodology offers promising implications for critical biomedical applications such as cancer driver gene detection.</p>","PeriodicalId":35418,"journal":{"name":"Cancer Informatics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11159540/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11769351241255645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Network analysis techniques often require tuning hyperparameters for optimal performance. For instance, the independent cascade model necessitates determining the probability of diffusion. Despite its importance, a consensus on effective parameter adjustment remains elusive.

Methods: In this study, we propose a novel approach utilizing experimental design methodologies, specifically 2-Factorial Analysis for Screening, and Response Surface Methodology (RSM) for parameter adjustment. We apply this methodology to the task of detecting cancer driver genes in colorectal cancer.

Result: Through experimental validation of colorectal cancer data, we demonstrate the effectiveness of our proposed methodology. Compared with existing methods, our approach offers several advantages, including reduced computational overhead, systematic parameter selection grounded in statistical theory, and improved performance in detecting cancer driver genes.

Conclusion: This study presents a significant advancement in the field of network analysis by providing a practical and systematic approach to hyperparameter tuning. By optimizing parameter settings, our methodology offers promising implications for critical biomedical applications such as cancer driver gene detection.

ExGenet,整合实验设计和响应面方法,用于基因调控网络中的癌症基因检测。
目的:网络分析技术通常需要调整超参数以获得最佳性能。例如,独立级联模型需要确定扩散概率。尽管超参数非常重要,但人们仍未就有效的参数调整达成共识:在本研究中,我们提出了一种利用实验设计方法的新方法,特别是用于筛选的 2 因子分析法和用于参数调整的响应面方法(RSM)。我们将该方法应用于检测结直肠癌中的癌症驱动基因:通过对结直肠癌数据的实验验证,我们证明了所提方法的有效性。与现有方法相比,我们的方法具有多项优势,包括减少了计算开销、基于统计理论的系统化参数选择以及提高了检测癌症驱动基因的性能:本研究提供了一种实用、系统的超参数调整方法,在网络分析领域取得了重大进展。通过优化参数设置,我们的方法为癌症驱动基因检测等关键生物医学应用提供了前景广阔的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer Informatics
Cancer Informatics Medicine-Oncology
CiteScore
3.00
自引率
5.00%
发文量
30
审稿时长
8 weeks
期刊介绍: The field of cancer research relies on advances in many other disciplines, including omics technology, mass spectrometry, radio imaging, computer science, and biostatistics. Cancer Informatics provides open access to peer-reviewed high-quality manuscripts reporting bioinformatics analysis of molecular genetics and/or clinical data pertaining to cancer, emphasizing the use of machine learning, artificial intelligence, statistical algorithms, advanced imaging techniques, data visualization, and high-throughput technologies. As the leading journal dedicated exclusively to the report of the use of computational methods in cancer research and practice, Cancer Informatics leverages methodological improvements in systems biology, genomics, proteomics, metabolomics, and molecular biochemistry into the fields of cancer detection, treatment, classification, risk-prediction, prevention, outcome, and modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信