{"title":"ExGenet, Integrating Design of Experiments and Response Surface Methodology for Cancer Gene Detection in Gene Regulatory Networks.","authors":"Mahboube Ayoubi, Babak Teimourpour, Alireza Hassanzadeh","doi":"10.1177/11769351241255645","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Network analysis techniques often require tuning hyperparameters for optimal performance. For instance, the independent cascade model necessitates determining the probability of diffusion. Despite its importance, a consensus on effective parameter adjustment remains elusive.</p><p><strong>Methods: </strong>In this study, we propose a novel approach utilizing experimental design methodologies, specifically 2-Factorial Analysis for Screening, and Response Surface Methodology (RSM) for parameter adjustment. We apply this methodology to the task of detecting cancer driver genes in colorectal cancer.</p><p><strong>Result: </strong>Through experimental validation of colorectal cancer data, we demonstrate the effectiveness of our proposed methodology. Compared with existing methods, our approach offers several advantages, including reduced computational overhead, systematic parameter selection grounded in statistical theory, and improved performance in detecting cancer driver genes.</p><p><strong>Conclusion: </strong>This study presents a significant advancement in the field of network analysis by providing a practical and systematic approach to hyperparameter tuning. By optimizing parameter settings, our methodology offers promising implications for critical biomedical applications such as cancer driver gene detection.</p>","PeriodicalId":35418,"journal":{"name":"Cancer Informatics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11159540/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11769351241255645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Network analysis techniques often require tuning hyperparameters for optimal performance. For instance, the independent cascade model necessitates determining the probability of diffusion. Despite its importance, a consensus on effective parameter adjustment remains elusive.
Methods: In this study, we propose a novel approach utilizing experimental design methodologies, specifically 2-Factorial Analysis for Screening, and Response Surface Methodology (RSM) for parameter adjustment. We apply this methodology to the task of detecting cancer driver genes in colorectal cancer.
Result: Through experimental validation of colorectal cancer data, we demonstrate the effectiveness of our proposed methodology. Compared with existing methods, our approach offers several advantages, including reduced computational overhead, systematic parameter selection grounded in statistical theory, and improved performance in detecting cancer driver genes.
Conclusion: This study presents a significant advancement in the field of network analysis by providing a practical and systematic approach to hyperparameter tuning. By optimizing parameter settings, our methodology offers promising implications for critical biomedical applications such as cancer driver gene detection.
期刊介绍:
The field of cancer research relies on advances in many other disciplines, including omics technology, mass spectrometry, radio imaging, computer science, and biostatistics. Cancer Informatics provides open access to peer-reviewed high-quality manuscripts reporting bioinformatics analysis of molecular genetics and/or clinical data pertaining to cancer, emphasizing the use of machine learning, artificial intelligence, statistical algorithms, advanced imaging techniques, data visualization, and high-throughput technologies. As the leading journal dedicated exclusively to the report of the use of computational methods in cancer research and practice, Cancer Informatics leverages methodological improvements in systems biology, genomics, proteomics, metabolomics, and molecular biochemistry into the fields of cancer detection, treatment, classification, risk-prediction, prevention, outcome, and modeling.