Targeting IGF2 to reprogram the tumor microenvironment for enhanced viro-immunotherapy.

IF 16.4 1区 医学 Q1 CLINICAL NEUROLOGY
Min Hye Noh, Jin Muk Kang, Alexandra A Miller, Grace Nguyen, Minxin Huang, Ji Seon Shim, Alberto J Bueso-Perez, Sara A Murphy, Kimberly A Rivera-Caraballo, Yoshihiro Otani, Eunju Kim, Seung-Hee Yoo, Yuanqing Yan, Yeshavanth Banasavadi-Siddegowda, Hiroshi Nakashima, E Antonio Chiocca, Balveen Kaur, Zhongming Zhao, Tae Jin Lee, Ji Young Yoo
{"title":"Targeting IGF2 to reprogram the tumor microenvironment for enhanced viro-immunotherapy.","authors":"Min Hye Noh, Jin Muk Kang, Alexandra A Miller, Grace Nguyen, Minxin Huang, Ji Seon Shim, Alberto J Bueso-Perez, Sara A Murphy, Kimberly A Rivera-Caraballo, Yoshihiro Otani, Eunju Kim, Seung-Hee Yoo, Yuanqing Yan, Yeshavanth Banasavadi-Siddegowda, Hiroshi Nakashima, E Antonio Chiocca, Balveen Kaur, Zhongming Zhao, Tae Jin Lee, Ji Young Yoo","doi":"10.1093/neuonc/noae105","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The FDA approval of oncolytic herpes simplex-1 virus (oHSV) therapy underscores its therapeutic promise and safety as a cancer immunotherapy. Despite this promise, the current efficacy of oHSV is significantly limited to a small subset of patients largely due to the resistance in tumor and tumor microenvironment (TME).</p><p><strong>Methods: </strong>RNA sequencing (RNA-Seq) was used to identify molecular targets of oHSV resistance. Intracranial human and murine glioma or breast cancer brain metastasis (BCBM) tumor-bearing mouse models were employed to elucidate the mechanism underlying oHSV therapy-induced resistance.</p><p><strong>Results: </strong>Transcriptome analysis identified IGF2 as one of the top-secreted proteins following oHSV treatment. Moreover, IGF2 expression was significantly upregulated in 10 out of 14 recurrent GBM patients after treatment with oHSV, rQNestin34.5v.2 (71.4%; P = .0020) (ClinicalTrials.gov, NCT03152318). Depletion of IGF2 substantially enhanced oHSV-mediated tumor cell killing in vitro and improved survival of mice bearing BCBM tumors in vivo. To mitigate the oHSV-induced IGF2 in the TME, we constructed a novel oHSV, oHSV-D11mt, secreting a modified IGF2R domain 11 (IGF2RD11mt) that acts as IGF2 decoy receptor. Selective blocking of IGF2 by IGF2RD11mt significantly increased cytotoxicity, reduced oHSV-induced neutrophils/PMN-MDSCs infiltration, and reduced secretion of immune suppressive/proangiogenic cytokines, while increased CD8 + cytotoxic T lymphocytes (CTLs) infiltration, leading to enhanced survival in GBM or BCBM tumor-bearing mice.</p><p><strong>Conclusions: </strong>This is the first study reporting that oHSV-induced secreted IGF2 exerts a critical role in resistance to oHSV therapy, which can be overcome by oHSV-D11mt as a promising therapeutic advance for enhanced viro-immunotherapy.</p>","PeriodicalId":19377,"journal":{"name":"Neuro-oncology","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376453/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/neuonc/noae105","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The FDA approval of oncolytic herpes simplex-1 virus (oHSV) therapy underscores its therapeutic promise and safety as a cancer immunotherapy. Despite this promise, the current efficacy of oHSV is significantly limited to a small subset of patients largely due to the resistance in tumor and tumor microenvironment (TME).

Methods: RNA sequencing (RNA-Seq) was used to identify molecular targets of oHSV resistance. Intracranial human and murine glioma or breast cancer brain metastasis (BCBM) tumor-bearing mouse models were employed to elucidate the mechanism underlying oHSV therapy-induced resistance.

Results: Transcriptome analysis identified IGF2 as one of the top-secreted proteins following oHSV treatment. Moreover, IGF2 expression was significantly upregulated in 10 out of 14 recurrent GBM patients after treatment with oHSV, rQNestin34.5v.2 (71.4%; P = .0020) (ClinicalTrials.gov, NCT03152318). Depletion of IGF2 substantially enhanced oHSV-mediated tumor cell killing in vitro and improved survival of mice bearing BCBM tumors in vivo. To mitigate the oHSV-induced IGF2 in the TME, we constructed a novel oHSV, oHSV-D11mt, secreting a modified IGF2R domain 11 (IGF2RD11mt) that acts as IGF2 decoy receptor. Selective blocking of IGF2 by IGF2RD11mt significantly increased cytotoxicity, reduced oHSV-induced neutrophils/PMN-MDSCs infiltration, and reduced secretion of immune suppressive/proangiogenic cytokines, while increased CD8 + cytotoxic T lymphocytes (CTLs) infiltration, leading to enhanced survival in GBM or BCBM tumor-bearing mice.

Conclusions: This is the first study reporting that oHSV-induced secreted IGF2 exerts a critical role in resistance to oHSV therapy, which can be overcome by oHSV-D11mt as a promising therapeutic advance for enhanced viro-immunotherapy.

以 IGF2-IGF1R 信号为靶点,重编程肿瘤微环境以增强病毒-免疫疗法。
背景:美国食品和药物管理局(FDA)批准了溶解性单纯疱疹-1病毒(oHSV)疗法,这凸显了它作为癌症免疫疗法的治疗前景和安全性。尽管有此前景,但目前 oHSV 的疗效明显局限于一小部分患者,这主要是由于肿瘤和肿瘤微环境(TME)的抗药性:方法:利用 RNA 测序(RNA-Seq)来确定 oHSV 耐药性的分子靶点。采用颅内人类和鼠类胶质瘤或乳腺癌脑转移(BCBM)肿瘤小鼠模型来阐明oHSV治疗诱导耐药的机制:结果:转录组分析发现 IGF2 是 oHSV 治疗后的主要分泌蛋白之一。此外,在使用 oHSV、rQNestin34.5v.2(71.4%)(p=0.0020)(ClinicalTrials.gov,NCT03152318)治疗后,14 名复发性 GBM 患者中有 10 人的 IGF2 表达明显上调。IGF2 的消耗大大增强了体外 oHSV 介导的肿瘤细胞杀伤力,并提高了体内 BCBM 肿瘤小鼠的存活率。为了减轻oHSV在TME中诱导的IGF2,我们构建了一种新型oHSV,即oHSV-D11mt,它能分泌修饰的IGF2R结构域11(IGF2RD11mt),作为IGF2诱饵受体。通过IGF2RD11mt选择性阻断IGF2可显著提高细胞毒性,减少oHSV诱导的中性粒细胞/PMN-MDSCs浸润,减少免疫抑制/血管生成细胞因子的分泌,同时增加CD8+细胞毒性T淋巴细胞(CTLs)浸润,从而提高GBM或BCBM肿瘤小鼠的生存率:这是首次报道 oHSV 诱导的分泌型 IGF2 在 oHSV 治疗耐药性中发挥关键作用的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuro-oncology
Neuro-oncology 医学-临床神经学
CiteScore
27.20
自引率
6.30%
发文量
1434
审稿时长
3-8 weeks
期刊介绍: Neuro-Oncology, the official journal of the Society for Neuro-Oncology, has been published monthly since January 2010. Affiliated with the Japan Society for Neuro-Oncology and the European Association of Neuro-Oncology, it is a global leader in the field. The journal is committed to swiftly disseminating high-quality information across all areas of neuro-oncology. It features peer-reviewed articles, reviews, symposia on various topics, abstracts from annual meetings, and updates from neuro-oncology societies worldwide.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信