Wei Guo , Xin Gao , Wenfang Guo , Yuxiao Ren , Lei Dai
{"title":"Theoretical and experimental studies on air-inflated rubber dam anchored on sidewall of the rigid base","authors":"Wei Guo , Xin Gao , Wenfang Guo , Yuxiao Ren , Lei Dai","doi":"10.1016/j.geotexmem.2024.05.010","DOIUrl":null,"url":null,"abstract":"<div><p>A theoretical study was conducted to investigate the cross-sectional configurations and the tensile forces of an air-inflated rubber dam anchored on the sidewall of the rigid base. A series of large-scale model tests were conducted using rubber dam models with a cross-sectional perimeter of 1.0 m and a length of 8.5 m. The results obtained from the analytical solutions agree well with those obtained from model tests. It is found that there is an optimum height of the rubber dam, especially for larger anchor depth with the increase of the inflated air pressure. The smaller the anchoring depth the higher the optimum inflated air pressure. The contact length between the rubber dam and the rigid base gradually decreases with the increasing inflated air pressure. The greater the anchor depth, the faster the contact length decreases to zero. Generally, the tensile force linearly increases with the increase of the normalized air pressure and the decrease of the anchor depth.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026611442400058X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A theoretical study was conducted to investigate the cross-sectional configurations and the tensile forces of an air-inflated rubber dam anchored on the sidewall of the rigid base. A series of large-scale model tests were conducted using rubber dam models with a cross-sectional perimeter of 1.0 m and a length of 8.5 m. The results obtained from the analytical solutions agree well with those obtained from model tests. It is found that there is an optimum height of the rubber dam, especially for larger anchor depth with the increase of the inflated air pressure. The smaller the anchoring depth the higher the optimum inflated air pressure. The contact length between the rubber dam and the rigid base gradually decreases with the increasing inflated air pressure. The greater the anchor depth, the faster the contact length decreases to zero. Generally, the tensile force linearly increases with the increase of the normalized air pressure and the decrease of the anchor depth.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.