Jaehoon Jung , Christopher E. Parrish , Bryan Costa , Suhong Yoo
{"title":"Simultaneous invariant normalization of waveform features from bathymetric lidar, SINWav: A Saipan case study","authors":"Jaehoon Jung , Christopher E. Parrish , Bryan Costa , Suhong Yoo","doi":"10.1016/j.isprsjprs.2024.05.024","DOIUrl":null,"url":null,"abstract":"<div><p>Over the past two decades, a major advance that enabled airborne bathymetric lidar to benefit a much wider range of marine science applications was the development of procedures for creating seafloor reflectance mosaics from recorded intensity data. It was recognized that intensity data, derived from the amplitudes of laser returns from the seafloor, contained information related to seafloor albedo and composition. However, the raw intensity data were also found to be related to a number of nuisance parameters, such that, when grided, they exhibited discontinuities, seamlines and other artifacts, hindering their use in benthic habitat mapping. These realizations led to the development of tools and workflows for correcting lidar intensity data to produce seamless seafloor reflectance mosaics. At present, an opportunity exists for another major advance in airborne bathymetric lidar by utilizing not only intensity data, but a large suite of waveform features that describe the shape of the return signal from the seafloor, to characterize benthic habitats and perform ecological assessments. However, similar to raw intensity data, other waveform features exhibit salient discontinuities, seamlines, and other artifacts, if uncorrected. Furthermore, in contrast to the case of intensity data, little work has been done on correction of an entire suite of waveform features to create a set of seamless seafloor mosaics. This study aims to address this need through a novel normalization method that integrates two image blending techniques: Gaussian weighted color matching and Laplacian pyramid blending. The proposed approach, Simultaneous Invariant Normalization of Waveform Features (SINWav), is designed to be invariant to the type of input waveform features, such that feature-specific tuning is unnecessary. To handle vast amounts of data efficiently, we developed a memory-efficient sparse matrix representation. The methods were applied to bathymetric lidar data from Saipan containing 16 different waveform features. Both visual assessments and quantitative analyses using quality metrics indicated that the proposed approach outperforms results derived from raw data and conventional linear transform.</p></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0924271624002284/pdfft?md5=25922c37d31f077da03bf2525d3fd035&pid=1-s2.0-S0924271624002284-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624002284","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past two decades, a major advance that enabled airborne bathymetric lidar to benefit a much wider range of marine science applications was the development of procedures for creating seafloor reflectance mosaics from recorded intensity data. It was recognized that intensity data, derived from the amplitudes of laser returns from the seafloor, contained information related to seafloor albedo and composition. However, the raw intensity data were also found to be related to a number of nuisance parameters, such that, when grided, they exhibited discontinuities, seamlines and other artifacts, hindering their use in benthic habitat mapping. These realizations led to the development of tools and workflows for correcting lidar intensity data to produce seamless seafloor reflectance mosaics. At present, an opportunity exists for another major advance in airborne bathymetric lidar by utilizing not only intensity data, but a large suite of waveform features that describe the shape of the return signal from the seafloor, to characterize benthic habitats and perform ecological assessments. However, similar to raw intensity data, other waveform features exhibit salient discontinuities, seamlines, and other artifacts, if uncorrected. Furthermore, in contrast to the case of intensity data, little work has been done on correction of an entire suite of waveform features to create a set of seamless seafloor mosaics. This study aims to address this need through a novel normalization method that integrates two image blending techniques: Gaussian weighted color matching and Laplacian pyramid blending. The proposed approach, Simultaneous Invariant Normalization of Waveform Features (SINWav), is designed to be invariant to the type of input waveform features, such that feature-specific tuning is unnecessary. To handle vast amounts of data efficiently, we developed a memory-efficient sparse matrix representation. The methods were applied to bathymetric lidar data from Saipan containing 16 different waveform features. Both visual assessments and quantitative analyses using quality metrics indicated that the proposed approach outperforms results derived from raw data and conventional linear transform.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.