{"title":"FetoML: Interpretable predictions of the fetotoxicity of drugs based on machine learning approaches.","authors":"Myeonghyeon Jeong, Sunyong Yoo","doi":"10.1002/minf.202300312","DOIUrl":null,"url":null,"abstract":"<p><p>Pregnant females may use medications to manage health problems that develop during pregnancy or that they had prior to pregnancy. However, using medications during pregnancy has a potential risk to the fetus. Assessing the fetotoxicity of drugs is essential to ensure safe treatments, but the current process is challenged by ethical issues, time, and cost. Therefore, the need for in silico models to efficiently assess the fetotoxicity of drugs has recently emerged. Previous studies have proposed successful machine learning models for fetotoxicity prediction and even suggest molecular substructures that are possibly associated with fetotoxicity risks or protective effects. However, the interpretation of the decisions of the models on fetotoxicity prediction for each drug is still insufficient. This study constructed machine learning-based models that can predict the fetotoxicity of drugs while providing explanations for the decisions. For this, permutation feature importance was used to identify the general features that the model made significant in predicting the fetotoxicity of drugs. In addition, features associated with fetotoxicity for each drug were analyzed using the attention mechanism. The predictive performance of all the constructed models was significantly high (AUROC: 0.854-0.974, AUPR: 0.890-0.975). Furthermore, we conducted literature reviews on the predicted important features and found that they were highly associated with fetotoxicity. We expect that our model will benefit fetotoxicity research by providing an evaluation of fetotoxicity risks for drugs or drug candidates, along with an interpretation of that prediction.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202300312"},"PeriodicalIF":2.8000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202300312","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Pregnant females may use medications to manage health problems that develop during pregnancy or that they had prior to pregnancy. However, using medications during pregnancy has a potential risk to the fetus. Assessing the fetotoxicity of drugs is essential to ensure safe treatments, but the current process is challenged by ethical issues, time, and cost. Therefore, the need for in silico models to efficiently assess the fetotoxicity of drugs has recently emerged. Previous studies have proposed successful machine learning models for fetotoxicity prediction and even suggest molecular substructures that are possibly associated with fetotoxicity risks or protective effects. However, the interpretation of the decisions of the models on fetotoxicity prediction for each drug is still insufficient. This study constructed machine learning-based models that can predict the fetotoxicity of drugs while providing explanations for the decisions. For this, permutation feature importance was used to identify the general features that the model made significant in predicting the fetotoxicity of drugs. In addition, features associated with fetotoxicity for each drug were analyzed using the attention mechanism. The predictive performance of all the constructed models was significantly high (AUROC: 0.854-0.974, AUPR: 0.890-0.975). Furthermore, we conducted literature reviews on the predicted important features and found that they were highly associated with fetotoxicity. We expect that our model will benefit fetotoxicity research by providing an evaluation of fetotoxicity risks for drugs or drug candidates, along with an interpretation of that prediction.
期刊介绍:
Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010.
Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation.
The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.