Rankin–Cohen brackets for Calabi–Yau modular forms

IF 1.2 3区 数学 Q1 MATHEMATICS
Younes Nikdelan
{"title":"Rankin–Cohen brackets for Calabi–Yau modular forms","authors":"Younes Nikdelan","doi":"10.4310/cntp.2024.v18.n1.a1","DOIUrl":null,"url":null,"abstract":"$\\def\\M{\\mathscr{M}}\\def\\Rscr{\\mathscr{R}}\\def\\Rsf{\\mathsf{R}}\\def\\Tsf{\\mathsf{T}}\\def\\tildeM{\\widetilde{\\M}}$For any positive integer $n$, we introduce a modular vector field $\\Rsf$ on a moduli space $\\Tsf$ of enhanced Calabi–Yau $n$-folds arising from the Dwork family. By Calabi–Yau quasi-modular forms associated to $\\Rsf$ we mean the elements of the graded $\\mathbb{C}$-algebra $\\tildeM$ generated by solutions of $\\Rsf$, which are provided with natural weights. The modular vector field $\\Rsf$ induces the derivation $\\Rscr$ and the Ramanujan–Serre type derivation $\\partial$ on $\\tildeM$. We show that they are degree $2$ differential operators and there exists a proper subspace $\\M \\subset \\tildeM$, called the space of Calabi–Yau modular forms associated to $\\Rsf$, which is closed under $\\partial$. Using the derivation $\\Rscr$, we define the Rankin–Cohen brackets for $\\tildeM$ and prove that the subspace generated by the positive weight elements of $\\M$ is closed under the Rankin–Cohen brackets. We find the mirror map of the Dwork family in terms of the Calabi–Yau modular forms.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":"92 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2024.v18.n1.a1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

$\def\M{\mathscr{M}}\def\Rscr{\mathscr{R}}\def\Rsf{\mathsf{R}}\def\Tsf{\mathsf{T}}\def\tildeM{\widetilde{\M}}$For any positive integer $n$, we introduce a modular vector field $\Rsf$ on a moduli space $\Tsf$ of enhanced Calabi–Yau $n$-folds arising from the Dwork family. By Calabi–Yau quasi-modular forms associated to $\Rsf$ we mean the elements of the graded $\mathbb{C}$-algebra $\tildeM$ generated by solutions of $\Rsf$, which are provided with natural weights. The modular vector field $\Rsf$ induces the derivation $\Rscr$ and the Ramanujan–Serre type derivation $\partial$ on $\tildeM$. We show that they are degree $2$ differential operators and there exists a proper subspace $\M \subset \tildeM$, called the space of Calabi–Yau modular forms associated to $\Rsf$, which is closed under $\partial$. Using the derivation $\Rscr$, we define the Rankin–Cohen brackets for $\tildeM$ and prove that the subspace generated by the positive weight elements of $\M$ is closed under the Rankin–Cohen brackets. We find the mirror map of the Dwork family in terms of the Calabi–Yau modular forms.
Calabi-Yau 模块形式的兰金-科恩括号
$def/M/{mathscr{M}}/def/Rscr{/mathscr{R}}/def/Rsf/mathsf{R}}/def/Tsf/mathsf{T}}/def/tildeM/widetilde/{M}}$对于任意正整数$n$、我们在一个由德沃家族产生的增强卡拉比-尤 $n$ 折叠的模空间 $\Tsf$ 上引入一个模向量场 $\Rsf$ 。与 $\Rsf$ 相关的 Calabi-Yau 准模态形式指的是由 $\Rsf$ 的解生成的有级 $\mathbb{C}$-algebra $\tildeM$ 的元素,这些元素具有自然权重。模向量场 $\Rsf$ 在 $\tildeM$ 上诱导了导数 $\Rscr$ 和拉曼努琼-塞尔型导数 $\partial$。我们证明它们都是度数为 2$ 的微分算子,并且存在一个适当的子空间 $\M \subset \tildeM$,称为与 $\Rsf$ 相关的 Calabi-Yau 模形式空间,它在 $\partial$ 下是封闭的。利用导数 $\Rscr$,我们定义了 $\tildeM$ 的兰金-科恩括号,并证明由 $\M$ 的正权重元素生成的子空间在兰金-科恩括号下是封闭的。我们根据卡拉比-尤模块形式找到了德沃家族的镜像映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信