Rankin–Cohen brackets for Calabi–Yau modular forms

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Younes Nikdelan
{"title":"Rankin–Cohen brackets for Calabi–Yau modular forms","authors":"Younes Nikdelan","doi":"10.4310/cntp.2024.v18.n1.a1","DOIUrl":null,"url":null,"abstract":"$\\def\\M{\\mathscr{M}}\\def\\Rscr{\\mathscr{R}}\\def\\Rsf{\\mathsf{R}}\\def\\Tsf{\\mathsf{T}}\\def\\tildeM{\\widetilde{\\M}}$For any positive integer $n$, we introduce a modular vector field $\\Rsf$ on a moduli space $\\Tsf$ of enhanced Calabi–Yau $n$-folds arising from the Dwork family. By Calabi–Yau quasi-modular forms associated to $\\Rsf$ we mean the elements of the graded $\\mathbb{C}$-algebra $\\tildeM$ generated by solutions of $\\Rsf$, which are provided with natural weights. The modular vector field $\\Rsf$ induces the derivation $\\Rscr$ and the Ramanujan–Serre type derivation $\\partial$ on $\\tildeM$. We show that they are degree $2$ differential operators and there exists a proper subspace $\\M \\subset \\tildeM$, called the space of Calabi–Yau modular forms associated to $\\Rsf$, which is closed under $\\partial$. Using the derivation $\\Rscr$, we define the Rankin–Cohen brackets for $\\tildeM$ and prove that the subspace generated by the positive weight elements of $\\M$ is closed under the Rankin–Cohen brackets. We find the mirror map of the Dwork family in terms of the Calabi–Yau modular forms.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2024.v18.n1.a1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

$\def\M{\mathscr{M}}\def\Rscr{\mathscr{R}}\def\Rsf{\mathsf{R}}\def\Tsf{\mathsf{T}}\def\tildeM{\widetilde{\M}}$For any positive integer $n$, we introduce a modular vector field $\Rsf$ on a moduli space $\Tsf$ of enhanced Calabi–Yau $n$-folds arising from the Dwork family. By Calabi–Yau quasi-modular forms associated to $\Rsf$ we mean the elements of the graded $\mathbb{C}$-algebra $\tildeM$ generated by solutions of $\Rsf$, which are provided with natural weights. The modular vector field $\Rsf$ induces the derivation $\Rscr$ and the Ramanujan–Serre type derivation $\partial$ on $\tildeM$. We show that they are degree $2$ differential operators and there exists a proper subspace $\M \subset \tildeM$, called the space of Calabi–Yau modular forms associated to $\Rsf$, which is closed under $\partial$. Using the derivation $\Rscr$, we define the Rankin–Cohen brackets for $\tildeM$ and prove that the subspace generated by the positive weight elements of $\M$ is closed under the Rankin–Cohen brackets. We find the mirror map of the Dwork family in terms of the Calabi–Yau modular forms.
Calabi-Yau 模块形式的兰金-科恩括号
$def/M/{mathscr{M}}/def/Rscr{/mathscr{R}}/def/Rsf/mathsf{R}}/def/Tsf/mathsf{T}}/def/tildeM/widetilde/{M}}$对于任意正整数$n$、我们在一个由德沃家族产生的增强卡拉比-尤 $n$ 折叠的模空间 $\Tsf$ 上引入一个模向量场 $\Rsf$ 。与 $\Rsf$ 相关的 Calabi-Yau 准模态形式指的是由 $\Rsf$ 的解生成的有级 $\mathbb{C}$-algebra $\tildeM$ 的元素,这些元素具有自然权重。模向量场 $\Rsf$ 在 $\tildeM$ 上诱导了导数 $\Rscr$ 和拉曼努琼-塞尔型导数 $\partial$。我们证明它们都是度数为 2$ 的微分算子,并且存在一个适当的子空间 $\M \subset \tildeM$,称为与 $\Rsf$ 相关的 Calabi-Yau 模形式空间,它在 $\partial$ 下是封闭的。利用导数 $\Rscr$,我们定义了 $\tildeM$ 的兰金-科恩括号,并证明由 $\M$ 的正权重元素生成的子空间在兰金-科恩括号下是封闭的。我们根据卡拉比-尤模块形式找到了德沃家族的镜像映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信