Canonial analysis of general relativity formulated with the new metric \(f^{ab}=(-g)^{\alpha }g^{ab}\)

IF 2.1 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
J. Klusoň
{"title":"Canonial analysis of general relativity formulated with the new metric \\(f^{ab}=(-g)^{\\alpha }g^{ab}\\)","authors":"J. Klusoň","doi":"10.1007/s10714-024-03258-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this short note we investigate canonical formalism for General Relativity which is formulated with the metric <span>\\(f^{ab}=(-g)^\\alpha g^{ab}\\)</span>. We find corresponding Hamiltonian and we show that constraint structure is the same as in the standard formulation. We also analyze another model when the spatial part of metric <span>\\(h^{ij}\\)</span> is related with the new one by relation <span>\\(a^{ij}=(\\det h_{ij})^\\beta h^{ij}\\)</span> and we argue that it corresponds to the gauge fixed version of the General Relativity formulated with the metric <span>\\(f^{ab}=(-g)^\\alpha g^{ab}\\)</span>.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"56 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10714-024-03258-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-024-03258-0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this short note we investigate canonical formalism for General Relativity which is formulated with the metric \(f^{ab}=(-g)^\alpha g^{ab}\). We find corresponding Hamiltonian and we show that constraint structure is the same as in the standard formulation. We also analyze another model when the spatial part of metric \(h^{ij}\) is related with the new one by relation \(a^{ij}=(\det h_{ij})^\beta h^{ij}\) and we argue that it corresponds to the gauge fixed version of the General Relativity formulated with the metric \(f^{ab}=(-g)^\alpha g^{ab}\).

用新度量$$f^{ab}=(-g)^{\alpha }g^{ab}$$ 对广义相对论的 Canonial 分析
在这篇短文中,我们研究了广义相对论的经典形式主义,它是用度量 \(f^{ab}=(-g)^\alpha g^{ab}\) 来表述的。我们找到了相应的哈密顿,并证明约束结构与标准形式相同。我们还分析了另一个模型,当度量 \(h^{ij}\) 的空间部分与新的度量 \(a^{ij}=(\det h_{ij})^\beta h^{ij}\) 相关时,我们认为它对应于用度量 \(f^{ab}=(-g)^\alpha g^{ab}\) 制定的广义相对论的规固定版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
General Relativity and Gravitation
General Relativity and Gravitation 物理-天文与天体物理
CiteScore
4.60
自引率
3.60%
发文量
136
审稿时长
3 months
期刊介绍: General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation. It welcomes in particular original articles on the following topics of current research: Analytical general relativity, including its interface with geometrical analysis Numerical relativity Theoretical and observational cosmology Relativistic astrophysics Gravitational waves: data analysis, astrophysical sources and detector science Extensions of general relativity Supergravity Gravitational aspects of string theory and its extensions Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations Quantum field theory in curved spacetime Non-commutative geometry and gravitation Experimental gravity, in particular tests of general relativity The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信