Jia-Lin Cui , Hua Li , Qi He , Bin-Yan Jin , Zhe Liu , Xiao-Ming Zhang , Li Zhang
{"title":"Integrating classic AI and agriculture: A novel model for predicting insecticide-likeness to enhance efficiency in insecticide development","authors":"Jia-Lin Cui , Hua Li , Qi He , Bin-Yan Jin , Zhe Liu , Xiao-Ming Zhang , Li Zhang","doi":"10.1016/j.compbiolchem.2024.108113","DOIUrl":null,"url":null,"abstract":"<div><p>The integration of artificial intelligence (AI) into smart agriculture boosts production and management efficiency, facilitating sustainable agricultural development. In intensive agricultural management, adopting eco-friendly and effective pesticides is crucial to promote green agricultural practices. However, exploring new insecticides species is a difficult and time-consuming task that involves significant risks. Enhancing compound druggability in the lead discovery phase could considerably shorten the discovery cycle, accelerating insecticides research and development. The Insecticide Activity Prediction (IAPred) model, a novel classic artificial intelligence-based method for evaluating the potential insecticidal activity of unknown functional compounds, is introduced in this study. The IAPred model utilized 27 insecticide-likeness features from PaDEL descriptors and employed an ensemble of Support Vector Machine (SVM) and Random Forest (RF) algorithms using the hard-vote mechanism, achieving an accuracy rate of 86 %. Notably, the IAPred model outperforms current models by accurately predicting the efficacy of novel insecticides such as nicofluprole, overcoming the limitations inherent in existing insecticide structures. Our research presents a practical approach for discovering and optimizing novel insecticide lead compounds quickly and efficiently.</p></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124001014","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of artificial intelligence (AI) into smart agriculture boosts production and management efficiency, facilitating sustainable agricultural development. In intensive agricultural management, adopting eco-friendly and effective pesticides is crucial to promote green agricultural practices. However, exploring new insecticides species is a difficult and time-consuming task that involves significant risks. Enhancing compound druggability in the lead discovery phase could considerably shorten the discovery cycle, accelerating insecticides research and development. The Insecticide Activity Prediction (IAPred) model, a novel classic artificial intelligence-based method for evaluating the potential insecticidal activity of unknown functional compounds, is introduced in this study. The IAPred model utilized 27 insecticide-likeness features from PaDEL descriptors and employed an ensemble of Support Vector Machine (SVM) and Random Forest (RF) algorithms using the hard-vote mechanism, achieving an accuracy rate of 86 %. Notably, the IAPred model outperforms current models by accurately predicting the efficacy of novel insecticides such as nicofluprole, overcoming the limitations inherent in existing insecticide structures. Our research presents a practical approach for discovering and optimizing novel insecticide lead compounds quickly and efficiently.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.