Statistical approaches enabling technology-specific assay interference prediction from large screening data sets

Vincenzo Palmacci , Steffen Hirte , Jorge Enrique Hernández González , Floriane Montanari , Johannes Kirchmair
{"title":"Statistical approaches enabling technology-specific assay interference prediction from large screening data sets","authors":"Vincenzo Palmacci ,&nbsp;Steffen Hirte ,&nbsp;Jorge Enrique Hernández González ,&nbsp;Floriane Montanari ,&nbsp;Johannes Kirchmair","doi":"10.1016/j.ailsci.2024.100099","DOIUrl":null,"url":null,"abstract":"<div><p>High throughput screening (HTS) technologies allow the biological testing of hundreds of thousands of compounds per day. Typically, a substantial proportion of the initial hits obtained by HTS are artifacts caused by assay interference. Therefore, global and technology-specific in silico models for identifying and predicting compounds interfering with biological assays have been developed. The global models benefit from training on large screening data sets, while the specialized models benefit from training on assay technology-specific experimental data. In this work, we develop and explore strategies for generating better predictors of technology-specific assay interference by utilizing the large bioactivity data matrices global models are trained on and employing partially new compound labeling approaches to maintain the assay technology awareness of specialized models. We demonstrate the utility of the statistically derived interference labels in machine learning using fluorescence-based assay interference as a representative example. Our random forest and multi-layer perceptron classifiers showed improved performance compared to existing models, achieving Matthews correlation coefficients (MCCs) of up to 0.47 on holdout data and up to 0.45 on an external test set. These results demonstrate that accurate assay-specific interference labels can be derived from large bioactivity data matrices, enabling the development of new machine-learning models without the need for further experimental data.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667318524000060/pdfft?md5=b99d896dcc34d54ad38a7b8ccb52ebda&pid=1-s2.0-S2667318524000060-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in the life sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667318524000060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High throughput screening (HTS) technologies allow the biological testing of hundreds of thousands of compounds per day. Typically, a substantial proportion of the initial hits obtained by HTS are artifacts caused by assay interference. Therefore, global and technology-specific in silico models for identifying and predicting compounds interfering with biological assays have been developed. The global models benefit from training on large screening data sets, while the specialized models benefit from training on assay technology-specific experimental data. In this work, we develop and explore strategies for generating better predictors of technology-specific assay interference by utilizing the large bioactivity data matrices global models are trained on and employing partially new compound labeling approaches to maintain the assay technology awareness of specialized models. We demonstrate the utility of the statistically derived interference labels in machine learning using fluorescence-based assay interference as a representative example. Our random forest and multi-layer perceptron classifiers showed improved performance compared to existing models, achieving Matthews correlation coefficients (MCCs) of up to 0.47 on holdout data and up to 0.45 on an external test set. These results demonstrate that accurate assay-specific interference labels can be derived from large bioactivity data matrices, enabling the development of new machine-learning models without the need for further experimental data.

从大型筛选数据集中预测特定技术检测干扰的统计方法
高通量筛选(HTS)技术每天可以对数十万种化合物进行生物测试。通常情况下,HTS 所获得的初始命中结果中有很大一部分是由检测干扰造成的假象。因此,我们开发了用于识别和预测干扰生物检测的化合物的全局和特定技术硅学模型。全局模型得益于大型筛选数据集的训练,而专用模型则得益于特定检测技术实验数据的训练。在这项工作中,我们开发并探索了一些策略,通过利用大型生物活性数据矩阵对全局模型进行训练,并采用部分新化合物标记方法来保持专用模型的检测技术意识,从而生成更好的特定技术检测干扰预测因子。我们以基于荧光的检测干扰为例,展示了统计得出的干扰标签在机器学习中的实用性。与现有模型相比,我们的随机森林和多层感知器分类器显示出更高的性能,在保留数据上实现了高达 0.47 的马修相关系数 (MCC),在外部测试集上实现了高达 0.45 的马修相关系数 (MCC)。这些结果表明,可以从大型生物活性数据矩阵中得出准确的化验特异性干扰标签,从而开发出新的机器学习模型,而无需进一步的实验数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial intelligence in the life sciences
Artificial intelligence in the life sciences Pharmacology, Biochemistry, Genetics and Molecular Biology (General), Computer Science Applications, Health Informatics, Drug Discovery, Veterinary Science and Veterinary Medicine (General)
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
15 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信