Neural Disparity Refinement

Fabio Tosi;Filippo Aleotti;Pierluigi Zama Ramirez;Matteo Poggi;Samuele Salti;Stefano Mattoccia;Luigi Di Stefano
{"title":"Neural Disparity Refinement","authors":"Fabio Tosi;Filippo Aleotti;Pierluigi Zama Ramirez;Matteo Poggi;Samuele Salti;Stefano Mattoccia;Luigi Di Stefano","doi":"10.1109/TPAMI.2024.3411292","DOIUrl":null,"url":null,"abstract":"We propose a framework that combines traditional, hand-crafted algorithms and recent advances in deep learning to obtain high-quality, high-resolution disparity maps from stereo images. By casting the refinement process as a continuous feature sampling strategy, our neural disparity refinement network can estimate an enhanced disparity map at any output resolution. Our solution can process any disparity map produced by classical stereo algorithms, as well as those predicted by modern stereo networks or even different depth-from-images approaches, such as the COLMAP structure-from-motion pipeline. Nonetheless, when deployed in the former configuration, our framework performs at its best in terms of zero-shot generalization from synthetic to real images. Moreover, its continuous formulation allows for easily handling the \n<italic>unbalanced</i>\n stereo setup very diffused in mobile phones.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10552115","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10552115/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a framework that combines traditional, hand-crafted algorithms and recent advances in deep learning to obtain high-quality, high-resolution disparity maps from stereo images. By casting the refinement process as a continuous feature sampling strategy, our neural disparity refinement network can estimate an enhanced disparity map at any output resolution. Our solution can process any disparity map produced by classical stereo algorithms, as well as those predicted by modern stereo networks or even different depth-from-images approaches, such as the COLMAP structure-from-motion pipeline. Nonetheless, when deployed in the former configuration, our framework performs at its best in terms of zero-shot generalization from synthetic to real images. Moreover, its continuous formulation allows for easily handling the unbalanced stereo setup very diffused in mobile phones.
神经差异细化
我们提出的框架结合了传统的手工算法和深度学习的最新进展,可从立体图像中获取高质量、高分辨率的差异图。通过将细化过程作为一种连续的特征采样策略,我们的神经差异细化网络可以在任何输出分辨率下估算出增强的差异图。我们的解决方案可以处理经典立体算法生成的任何差异图,也可以处理现代立体网络甚至不同的深度图像方法(如 COLMAP 结构-运动管道)预测的差异图。尽管如此,当采用前一种配置时,我们的框架在从合成图像到真实图像的零点泛化方面表现最佳。此外,它的连续表述方式可以轻松处理手机中非常普遍的不平衡立体设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信