Nonlinear classifiers for wet-neuromorphic computing using gene regulatory neural network.

IF 2.4 Q3 BIOPHYSICS
Biophysical reports Pub Date : 2024-09-11 Epub Date: 2024-06-05 DOI:10.1016/j.bpr.2024.100158
Adrian Ratwatte, Samitha Somathilaka, Sasitharan Balasubramaniam, Assaf A Gilad
{"title":"Nonlinear classifiers for wet-neuromorphic computing using gene regulatory neural network.","authors":"Adrian Ratwatte, Samitha Somathilaka, Sasitharan Balasubramaniam, Assaf A Gilad","doi":"10.1016/j.bpr.2024.100158","DOIUrl":null,"url":null,"abstract":"<p><p>The gene regulatory network (GRN) of biological cells governs a number of key functionalities that enable them to adapt and survive through different environmental conditions. Close observation of the GRN shows that the structure and operational principles resemble an artificial neural network (ANN), which can pave the way for the development of wet-neuromorphic computing systems. Genes are integrated into gene-perceptrons with transcription factors (TFs) as input, where the TF concentration relative to half-maximal RNA concentration and gene product copy number influences transcription and translation via weighted multiplication before undergoing a nonlinear activation function. This process yields protein concentration as the output, effectively turning the entire GRN into a gene regulatory neural network (GRNN). In this paper, we establish nonlinear classifiers for molecular machine learning using the inherent sigmoidal nonlinear behavior of gene expression. The eigenvalue-based stability analysis, tailored to system parameters, confirms maximum-stable concentration levels, minimizing concentration fluctuations and computational errors. Given the significance of the stabilization phase in GRNN computing and the dynamic nature of the GRN, alongside potential changes in system parameters, we utilize the Lyapunov stability theorem for temporal stability analysis. Based on this GRN-to-GRNN mapping and stability analysis, three classifiers are developed utilizing two generic multilayer sub-GRNNs and a sub-GRNN extracted from the Escherichia coli GRN. Our findings also reveal the adaptability of different sub-GRNNs to suit different application requirements.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11231448/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpr.2024.100158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The gene regulatory network (GRN) of biological cells governs a number of key functionalities that enable them to adapt and survive through different environmental conditions. Close observation of the GRN shows that the structure and operational principles resemble an artificial neural network (ANN), which can pave the way for the development of wet-neuromorphic computing systems. Genes are integrated into gene-perceptrons with transcription factors (TFs) as input, where the TF concentration relative to half-maximal RNA concentration and gene product copy number influences transcription and translation via weighted multiplication before undergoing a nonlinear activation function. This process yields protein concentration as the output, effectively turning the entire GRN into a gene regulatory neural network (GRNN). In this paper, we establish nonlinear classifiers for molecular machine learning using the inherent sigmoidal nonlinear behavior of gene expression. The eigenvalue-based stability analysis, tailored to system parameters, confirms maximum-stable concentration levels, minimizing concentration fluctuations and computational errors. Given the significance of the stabilization phase in GRNN computing and the dynamic nature of the GRN, alongside potential changes in system parameters, we utilize the Lyapunov stability theorem for temporal stability analysis. Based on this GRN-to-GRNN mapping and stability analysis, three classifiers are developed utilizing two generic multilayer sub-GRNNs and a sub-GRNN extracted from the Escherichia coli GRN. Our findings also reveal the adaptability of different sub-GRNNs to suit different application requirements.

使用基因调控神经网络的湿拟态计算非线性分类器
生物细胞的基因调控网络(GRN)控制着许多关键功能,使它们能够适应不同的环境条件并存活下来。对基因调控网络的仔细观察表明,其结构和运行原理类似于人工神经网络(ANN),可为开发湿非线性计算系统铺平道路。基因以转录因子(TFs)为输入被整合到基因感知器中,TF 浓度相对于半最大 RNA 浓度和基因产物拷贝数,通过加权乘法影响转录和翻译,然后再经过非线性激活函数。这一过程产生的蛋白质浓度作为输出,有效地将整个 GRN 转化为基因调控神经网络(GRNN)。在本文中,我们利用基因表达固有的西格玛非线性行为,为分子机器学习建立了非线性分类器。根据系统参数定制的基于特征值的稳定性分析确认了最大稳定浓度水平,最大限度地减少了浓度波动和计算误差。考虑到 GRNN 计算中稳定阶段的重要性和 GRNN 的动态性质,以及系统参数的潜在变化,我们利用 Lyapunov 稳定性定理进行了时间稳定性分析。在 GRN 到 GRNN 映射和稳定性分析的基础上,我们利用两个通用多层子 GRNN 和一个从大肠杆菌 GRN 中提取的子 GRNN 开发了三个分类器。我们的研究结果还揭示了不同子 GRNN 的适应性,以满足不同的应用要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biophysical reports
Biophysical reports Biophysics
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
75 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信