Leveraging Electronic Health Records to Assess Residential Mobility Among Veterans in the Veterans Health Administration.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
ACS Applied Electronic Materials Pub Date : 2024-07-01 Epub Date: 2024-06-07 DOI:10.1097/MLR.0000000000002017
Karen H Wang, Zoé M Hendrickson, Mary L Miller, Erica A Abel, Melissa Skanderson, Joseph Erdos, Julie A Womack, Cynthia A Brandt, Mayur Desai, Ling Han
{"title":"Leveraging Electronic Health Records to Assess Residential Mobility Among Veterans in the Veterans Health Administration.","authors":"Karen H Wang, Zoé M Hendrickson, Mary L Miller, Erica A Abel, Melissa Skanderson, Joseph Erdos, Julie A Womack, Cynthia A Brandt, Mayur Desai, Ling Han","doi":"10.1097/MLR.0000000000002017","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Residential mobility, or a change in residence, can influence health care utilization and outcomes. Health systems can leverage their patients' residential addresses stored in their electronic health records (EHRs) to better understand the relationships among patients' residences, mobility, and health. The Veteran Health Administration (VHA), with a unique nationwide network of health care systems and integrated EHR, holds greater potential for examining these relationships.</p><p><strong>Methods: </strong>We conducted a cross-sectional analysis to examine the association of sociodemographics, clinical conditions, and residential mobility. We defined residential mobility by the number of VHA EHR residential addresses identified for each patient in a 1-year period (1/1-12/31/2018), with 2 different addresses indicating one move. We used generalized logistic regression to model the relationship between a priori selected correlates and residential mobility as a multinomial outcome (0, 1, ≥2 moves).</p><p><strong>Results: </strong>In our sample, 84.4% (n=3,803,475) veterans had no move, 13.0% (n=587,765) had 1 move, and 2.6% (n=117,680) had ≥2 moves. In the multivariable analyses, women had greater odds of moving [aOR=1.11 (95% CI: 1.10,1.12) 1 move; 1.27 (1.25,1.30) ≥2 moves] than men. Veterans with substance use disorders also had greater odds of moving [aOR=1.26 (1.24,1.28) 1 move; 1.77 (1.72,1.81) ≥2 moves].</p><p><strong>Discussion: </strong>Our study suggests about 16% of veterans seen at VHA had at least 1 residential move in 2018. VHA data can be a resource to examine relationships between place, residential mobility, and health.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MLR.0000000000002017","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Residential mobility, or a change in residence, can influence health care utilization and outcomes. Health systems can leverage their patients' residential addresses stored in their electronic health records (EHRs) to better understand the relationships among patients' residences, mobility, and health. The Veteran Health Administration (VHA), with a unique nationwide network of health care systems and integrated EHR, holds greater potential for examining these relationships.

Methods: We conducted a cross-sectional analysis to examine the association of sociodemographics, clinical conditions, and residential mobility. We defined residential mobility by the number of VHA EHR residential addresses identified for each patient in a 1-year period (1/1-12/31/2018), with 2 different addresses indicating one move. We used generalized logistic regression to model the relationship between a priori selected correlates and residential mobility as a multinomial outcome (0, 1, ≥2 moves).

Results: In our sample, 84.4% (n=3,803,475) veterans had no move, 13.0% (n=587,765) had 1 move, and 2.6% (n=117,680) had ≥2 moves. In the multivariable analyses, women had greater odds of moving [aOR=1.11 (95% CI: 1.10,1.12) 1 move; 1.27 (1.25,1.30) ≥2 moves] than men. Veterans with substance use disorders also had greater odds of moving [aOR=1.26 (1.24,1.28) 1 move; 1.77 (1.72,1.81) ≥2 moves].

Discussion: Our study suggests about 16% of veterans seen at VHA had at least 1 residential move in 2018. VHA data can be a resource to examine relationships between place, residential mobility, and health.

利用电子健康记录评估退伍军人健康管理局退伍军人的居住流动性。
背景:居住地的流动性或居住地的改变会影响医疗保健的使用和结果。医疗系统可以利用其电子健康记录(EHR)中存储的患者住址,更好地了解患者住址、流动性和健康之间的关系。退伍军人健康管理局(VHA)拥有独特的全国性医疗保健系统网络和综合电子病历,在研究这些关系方面具有更大的潜力:我们进行了一项横断面分析,以研究社会人口统计学、临床状况和居住流动性之间的关联。我们根据每位患者在 1 年内(1/1-12/31/2018)的 VHA EHR 住址数量来定义居住流动性,2 个不同的住址表示一次流动。我们使用广义逻辑回归来模拟先验选定的相关因素与居住流动性之间的关系,并将其作为多项式结果(0,1,≥2 次搬迁):在我们的样本中,84.4%(n=3,803,475)的退伍军人没有迁移过,13.0%(n=587,765)迁移过 1 次,2.6%(n=117,680)迁移≥2 次。在多变量分析中,女性搬家的几率比男性大[aOR=1.11 (95% CI: 1.10,1.12) 1次搬家;1.27 (1.25,1.30) ≥2次搬家]。患有药物使用障碍的退伍军人搬家的几率也更大[aOR=1.26 (1.24,1.28) 1次搬家;1.77 (1.72,1.81) ≥2次搬家]:我们的研究表明,2018 年,在退伍军人事务部就诊的退伍军人中约有 16% 的人至少搬过一次家。退伍军人事务部的数据可以成为研究地点、居住流动性和健康之间关系的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信