J.L. Igelbrink , A. González Casanova , C. Smadi , A. Wakolbinger
{"title":"Muller’s ratchet in a near-critical regime: Tournament versus fitness proportional selection","authors":"J.L. Igelbrink , A. González Casanova , C. Smadi , A. Wakolbinger","doi":"10.1016/j.tpb.2024.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>Muller’s ratchet, in its prototype version, models a haploid, asexual population whose size <span><math><mi>N</mi></math></span> is constant over the generations. Slightly deleterious mutations are acquired along the lineages at a constant rate, and individuals carrying less mutations have a selective advantage. The classical variant considers <em>fitness proportional</em> selection, but other fitness schemes are conceivable as well. Inspired by the work of Etheridge et al. (2009) we propose a parameter scaling which fits well to the “near-critical” regime that was in the focus of Etheridge et al. (2009) (and in which the mutation–selection ratio diverges logarithmically as <span><math><mrow><mi>N</mi><mo>→</mo><mi>∞</mi></mrow></math></span>). Using a Moran model, we investigate the“rule of thumb” given in Etheridge et al. (2009) for the click rate of the “classical ratchet” by putting it into the context of new results on the long-time evolution of the size of the best class of the ratchet with (binary) tournament selection. This variant of Muller’s ratchet was introduced in González Casanova et al. (2023), and was analysed there in a subcritical parameter regime. Other than that of the classical ratchet, the size of the best class of the tournament ratchet follows an autonomous dynamics up to the time of its extinction. It turns out that, under a suitable correspondence of the model parameters, this dynamics coincides with the so called Poisson profile approximation of the dynamics of the best class of the classical ratchet.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0040580924000613/pdfft?md5=39cd36b5168e3c4b5182ac2584e304f9&pid=1-s2.0-S0040580924000613-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040580924000613","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Muller’s ratchet, in its prototype version, models a haploid, asexual population whose size is constant over the generations. Slightly deleterious mutations are acquired along the lineages at a constant rate, and individuals carrying less mutations have a selective advantage. The classical variant considers fitness proportional selection, but other fitness schemes are conceivable as well. Inspired by the work of Etheridge et al. (2009) we propose a parameter scaling which fits well to the “near-critical” regime that was in the focus of Etheridge et al. (2009) (and in which the mutation–selection ratio diverges logarithmically as ). Using a Moran model, we investigate the“rule of thumb” given in Etheridge et al. (2009) for the click rate of the “classical ratchet” by putting it into the context of new results on the long-time evolution of the size of the best class of the ratchet with (binary) tournament selection. This variant of Muller’s ratchet was introduced in González Casanova et al. (2023), and was analysed there in a subcritical parameter regime. Other than that of the classical ratchet, the size of the best class of the tournament ratchet follows an autonomous dynamics up to the time of its extinction. It turns out that, under a suitable correspondence of the model parameters, this dynamics coincides with the so called Poisson profile approximation of the dynamics of the best class of the classical ratchet.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.