Role of the globus pallidus in motor and non-motor symptoms of Parkinson's disease.

IF 5.9 2区 医学 Q2 CELL BIOLOGY
Neural Regeneration Research Pub Date : 2025-06-01 Epub Date: 2024-06-03 DOI:10.4103/NRR.NRR-D-23-01660
Yimiao Jiang, Zengxin Qi, Huixian Zhu, Kangli Shen, Ruiqi Liu, Chenxin Fang, Weiwei Lou, Yifan Jiang, Wangrui Yuan, Xin Cao, Liang Chen, Qianxing Zhuang
{"title":"Role of the globus pallidus in motor and non-motor symptoms of Parkinson's disease.","authors":"Yimiao Jiang, Zengxin Qi, Huixian Zhu, Kangli Shen, Ruiqi Liu, Chenxin Fang, Weiwei Lou, Yifan Jiang, Wangrui Yuan, Xin Cao, Liang Chen, Qianxing Zhuang","doi":"10.4103/NRR.NRR-D-23-01660","DOIUrl":null,"url":null,"abstract":"<p><p>The globus pallidus plays a pivotal role in the basal ganglia circuit. Parkinson's disease is characterized by degeneration of dopamine-producing cells in the substantia nigra, which leads to dopamine deficiency in the brain that subsequently manifests as various motor and non-motor symptoms. This review aims to summarize the involvement of the globus pallidus in both motor and non-motor manifestations of Parkinson's disease. The firing activities of parvalbumin neurons in the medial globus pallidus, including both the firing rate and pattern, exhibit strong correlations with the bradykinesia and rigidity associated with Parkinson's disease. Increased beta oscillations, which are highly correlated with bradykinesia and rigidity, are regulated by the lateral globus pallidus. Furthermore, bradykinesia and rigidity are strongly linked to the loss of dopaminergic projections within the cortical-basal ganglia-thalamocortical loop. Resting tremors are attributed to the transmission of pathological signals from the basal ganglia through the motor cortex to the cerebellum-ventral intermediate nucleus circuit. The cortico-striato-pallidal loop is responsible for mediating pallidi-associated sleep disorders. Medication and deep brain stimulation are the primary therapeutic strategies addressing the globus pallidus in Parkinson's disease. Medication is the primary treatment for motor symptoms in the early stages of Parkinson's disease, while deep brain stimulation has been clinically proven to be effective in alleviating symptoms in patients with advanced Parkinson's disease, particularly for the movement disorders caused by levodopa. Deep brain stimulation targeting the globus pallidus internus can improve motor function in patients with tremor-dominant and non-tremor-dominant Parkinson's disease, while deep brain stimulation targeting the globus pallidus externus can alter the temporal pattern of neural activity throughout the basal ganglia-thalamus network. Therefore, the composition of the globus pallidus neurons, the neurotransmitters that act on them, their electrical activity, and the neural circuits they form can guide the search for new multi-target drugs to treat Parkinson's disease in clinical practice. Examining the potential intra-nuclear and neural circuit mechanisms of deep brain stimulation associated with the globus pallidus can facilitate the management of both motor and non-motor symptoms while minimizing the side effects caused by deep brain stimulation.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Regeneration Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/NRR.NRR-D-23-01660","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The globus pallidus plays a pivotal role in the basal ganglia circuit. Parkinson's disease is characterized by degeneration of dopamine-producing cells in the substantia nigra, which leads to dopamine deficiency in the brain that subsequently manifests as various motor and non-motor symptoms. This review aims to summarize the involvement of the globus pallidus in both motor and non-motor manifestations of Parkinson's disease. The firing activities of parvalbumin neurons in the medial globus pallidus, including both the firing rate and pattern, exhibit strong correlations with the bradykinesia and rigidity associated with Parkinson's disease. Increased beta oscillations, which are highly correlated with bradykinesia and rigidity, are regulated by the lateral globus pallidus. Furthermore, bradykinesia and rigidity are strongly linked to the loss of dopaminergic projections within the cortical-basal ganglia-thalamocortical loop. Resting tremors are attributed to the transmission of pathological signals from the basal ganglia through the motor cortex to the cerebellum-ventral intermediate nucleus circuit. The cortico-striato-pallidal loop is responsible for mediating pallidi-associated sleep disorders. Medication and deep brain stimulation are the primary therapeutic strategies addressing the globus pallidus in Parkinson's disease. Medication is the primary treatment for motor symptoms in the early stages of Parkinson's disease, while deep brain stimulation has been clinically proven to be effective in alleviating symptoms in patients with advanced Parkinson's disease, particularly for the movement disorders caused by levodopa. Deep brain stimulation targeting the globus pallidus internus can improve motor function in patients with tremor-dominant and non-tremor-dominant Parkinson's disease, while deep brain stimulation targeting the globus pallidus externus can alter the temporal pattern of neural activity throughout the basal ganglia-thalamus network. Therefore, the composition of the globus pallidus neurons, the neurotransmitters that act on them, their electrical activity, and the neural circuits they form can guide the search for new multi-target drugs to treat Parkinson's disease in clinical practice. Examining the potential intra-nuclear and neural circuit mechanisms of deep brain stimulation associated with the globus pallidus can facilitate the management of both motor and non-motor symptoms while minimizing the side effects caused by deep brain stimulation.

苍白球在帕金森病运动和非运动症状中的作用。
摘要:苍白球在基底神经节回路中起着关键作用。帕金森病的特征是黑质中产生多巴胺的细胞发生变性,导致脑内多巴胺缺乏,进而表现为各种运动和非运动症状。本综述旨在总结球状苍白球在帕金森病的运动和非运动表现中的参与情况。内侧苍白球旁神经元的发射活动,包括发射率和模式,与帕金森病相关的运动迟缓和僵直表现出很强的相关性。与运动迟缓和僵直高度相关的贝塔振荡增加是由外侧丘脑调节的。此外,运动迟缓和僵直与皮质-基底节-丘脑皮质环路内多巴胺能投射的丧失密切相关。静止性震颤是由于病理信号从基底节通过运动皮层传递到小脑-腹侧中间核回路。皮质-纹状体-苍白球环路负责介导苍白球相关睡眠障碍。药物治疗和脑深部刺激是针对帕金森病苍白球的主要治疗策略。药物治疗是帕金森病早期运动症状的主要治疗方法,而深部脑刺激经临床证实可有效缓解晚期帕金森病患者的症状,尤其是左旋多巴引起的运动障碍。针对苍白球内侧的深部脑刺激可以改善震颤为主型和非震颤为主型帕金森病患者的运动功能,而针对苍白球外侧的深部脑刺激可以改变整个基底节-丘脑网络的神经活动时间模式。因此,研究苍白球神经元的组成、作用于这些神经元的神经递质、神经元的电活动及其形成的神经回路,可以为临床实践中寻找治疗帕金森病的多靶点新药提供指导。研究与苍白球相关的深部脑刺激的潜在核内机制和神经回路机制有助于治疗运动和非运动症状,同时最大限度地减少深部脑刺激引起的副作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Regeneration Research
Neural Regeneration Research CELL BIOLOGY-NEUROSCIENCES
CiteScore
8.00
自引率
9.80%
发文量
515
审稿时长
1.0 months
期刊介绍: Neural Regeneration Research (NRR) is the Open Access journal specializing in neural regeneration and indexed by SCI-E and PubMed. The journal is committed to publishing articles on basic pathobiology of injury, repair and protection to the nervous system, while considering preclinical and clinical trials targeted at improving traumatically injuried patients and patients with neurodegenerative diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信