{"title":"CPC-SAX: Data mining of financial chart patterns with symbolic aggregate approXimation and instance-based multilabel classification","authors":"Konstantinos Nikolaou","doi":"10.1016/j.jfds.2024.100132","DOIUrl":null,"url":null,"abstract":"<div><p>In order to be able to classify financial chart patterns through machine learning, we introduced and applied a novel classification algorithm on time series data of different financial assets through SAX (Symbolic Aggregate approXimation), a transformation algorithm. After applying a linear regression model on the features of a dataset to reduce the number of parameters needed, converting real valued data to strings of characters through Piecewise Aggregate Approximation (PAA) and labelling each level increasingly with Latin alphabets characters, the new algorithm called CPC-SAX (Chart Pattern Classification) compares vectors describing the ASCII value changes along the string and classifies them using already labelled SAX-transformed data. The results show satisfying accuracy scores on data of different time windows and types of assets. We also obtain information on the appearance of said patterns. By reaching our goal of properly classifying chart patterns as they appear, we can have a better indication of the future price trend, allowing the investor/trader to make better informed decisions.</p></div>","PeriodicalId":36340,"journal":{"name":"Journal of Finance and Data Science","volume":"10 ","pages":"Article 100132"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405918824000175/pdfft?md5=231f2d62031e05b4e39adbf2530d03c2&pid=1-s2.0-S2405918824000175-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Finance and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405918824000175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
In order to be able to classify financial chart patterns through machine learning, we introduced and applied a novel classification algorithm on time series data of different financial assets through SAX (Symbolic Aggregate approXimation), a transformation algorithm. After applying a linear regression model on the features of a dataset to reduce the number of parameters needed, converting real valued data to strings of characters through Piecewise Aggregate Approximation (PAA) and labelling each level increasingly with Latin alphabets characters, the new algorithm called CPC-SAX (Chart Pattern Classification) compares vectors describing the ASCII value changes along the string and classifies them using already labelled SAX-transformed data. The results show satisfying accuracy scores on data of different time windows and types of assets. We also obtain information on the appearance of said patterns. By reaching our goal of properly classifying chart patterns as they appear, we can have a better indication of the future price trend, allowing the investor/trader to make better informed decisions.