Linear temporal stability of Jeffery–Hamel flow of nanofluids

IF 2.5 3区 工程技术 Q2 MECHANICS
Danial Rezaee
{"title":"Linear temporal stability of Jeffery–Hamel flow of nanofluids","authors":"Danial Rezaee","doi":"10.1016/j.euromechflu.2024.05.002","DOIUrl":null,"url":null,"abstract":"<div><p>Flow stability plays a key role in transition to turbulence in various systems. This transition initiates with disturbances appearing in the laminar base flow, potentially amplifying over time based on flow and fluid parameters. In response to these amplified disturbances, the flow undergoes successive stages of different laminar flows, ultimately transitioning to turbulence. One influential parameter affecting flow stability is the nanoparticle volume fraction (<span><math><mi>ϕ</mi></math></span>) in nanofluids, extensively employed in thermofluid systems like cooling devices to enhance fluid thermal conductivity and the heat transfer coefficient. Focusing on the impact of nanoparticles on Jeffery–Hamel flow stability, this study assumes fluid properties are temperature- and pressure-independent, exclusively examining the momentum transfer aspect. The analysis commences by deriving the base laminar flow solution. Subsequently, linear temporal stability analysis is employed, imposing infinitesimally-small perturbations on the base flow as a modified form of normal modes. A generalized Orr–Sommerfeld equation is derived and solved using a spectral method. Results indicate that, assuming nanofluid viscosity as <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mi>nf</mi></mrow></msub><mo>=</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>/</mo><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>ϕ</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn><mo>.</mo><mn>5</mn></mrow></msup></mrow></math></span>, nanoparticle effects on momentum transfer and flow stability hinge on the ratio of nano-solid particle density to base fluid density (<span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mo>=</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>/</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>f</mi></mrow></msub></mrow></math></span>). For <span><math><mrow><mi>ϕ</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>.</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>, flow stabilization occurs with <span><math><mi>ϕ</mi></math></span> when <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mo>&lt;</mo><mn>3</mn><mo>.</mo><mn>5000</mn></mrow></math></span>, while destabilization is observed when <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mo>&gt;</mo><mn>4</mn><mo>.</mo><mn>0135</mn></mrow></math></span>. Notably, nanoparticles exhibit a negligible impact on flow stability when <span><math><mrow><mn>3</mn><mo>.</mo><mn>5000</mn><mo>≤</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mo>≤</mo><mn>4</mn><mo>.</mo><mn>0135</mn></mrow></math></span>.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"107 ","pages":"Pages 1-16"},"PeriodicalIF":2.5000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754624000670","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Flow stability plays a key role in transition to turbulence in various systems. This transition initiates with disturbances appearing in the laminar base flow, potentially amplifying over time based on flow and fluid parameters. In response to these amplified disturbances, the flow undergoes successive stages of different laminar flows, ultimately transitioning to turbulence. One influential parameter affecting flow stability is the nanoparticle volume fraction (ϕ) in nanofluids, extensively employed in thermofluid systems like cooling devices to enhance fluid thermal conductivity and the heat transfer coefficient. Focusing on the impact of nanoparticles on Jeffery–Hamel flow stability, this study assumes fluid properties are temperature- and pressure-independent, exclusively examining the momentum transfer aspect. The analysis commences by deriving the base laminar flow solution. Subsequently, linear temporal stability analysis is employed, imposing infinitesimally-small perturbations on the base flow as a modified form of normal modes. A generalized Orr–Sommerfeld equation is derived and solved using a spectral method. Results indicate that, assuming nanofluid viscosity as μnf=μf/(1ϕ)2.5, nanoparticle effects on momentum transfer and flow stability hinge on the ratio of nano-solid particle density to base fluid density (Rρ=ρs/ρf). For ϕ(0,0.1], flow stabilization occurs with ϕ when Rρ<3.5000, while destabilization is observed when Rρ>4.0135. Notably, nanoparticles exhibit a negligible impact on flow stability when 3.5000Rρ4.0135.

纳米流体杰弗里-哈梅尔流动的线性时间稳定性
在各种系统向湍流过渡的过程中,流动稳定性起着关键作用。这种过渡始于层流基流中出现的扰动,随着时间的推移,扰动可能会根据流动和流体参数而放大。为了应对这些被放大的扰动,流动会经历不同层流的连续阶段,最终过渡到湍流。影响流动稳定性的一个有影响力的参数是纳米流体中的纳米粒子体积分数(j),它被广泛应用于冷却装置等热流体系统中,以提高流体的热导率和传热系数。本研究的重点是纳米粒子对杰弗里-哈梅尔流动稳定性的影响,假定流体特性与温度和压力无关,只研究动量传递方面。分析从推导基本层流解决方案开始。随后,采用线性时间稳定性分析,对基本流动施加无限小的扰动,作为法向模态的改进形式。推导出一个广义的 Orr-Sommerfeld 方程,并使用频谱法进行求解。结果表明,假设纳米流体粘度为μnf=μf/(1-j)2.5,纳米粒子对动量传递和流动稳定性的影响取决于纳米固体粒子密度与基础流体密度之比(Rρ=ρs/ρf)。对于 ϕ∈(0,0.1],当 Rρ<3.5000 时,ϕ 会产生流动稳定性,而当 Rρ>4.0135 时,则会出现流动不稳定性。值得注意的是,当 3.5000≤Rρ≤4.0135 时,纳米粒子对流动稳定性的影响可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
3.80%
发文量
127
审稿时长
58 days
期刊介绍: The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信