Finding a Small, Diverse Subset of the Pareto Solution Set in Bi-Objective Search (Extended Abstract)

Pablo Araneda, Carlos Hernández Ulloa, Nicolás Rivera, Jorge A. Baier
{"title":"Finding a Small, Diverse Subset of the Pareto Solution Set in Bi-Objective Search (Extended Abstract)","authors":"Pablo Araneda, Carlos Hernández Ulloa, Nicolás Rivera, Jorge A. Baier","doi":"10.1609/socs.v17i1.31568","DOIUrl":null,"url":null,"abstract":"Bi-objective search requires computing a Pareto solution set which contains a set of paths. In real-world applications, Pareto solution sets may contain several tens or even hundreds of solutions. For a human user trying to commit to just one of these paths, navigating through a large solution set may become overwhelming, which motivates the problem of computing small, good-quality subsets of Pareto frontiers. This document presents two main contributions. First, we provide a simple formalization of good-quality subsets of a Pareto solution set. For this, we use measure of richness which has been employed in the study of Population Dynamics. Second, we propose Chebyshev BOA*, a variant of BOA*\n to compute good-quality subset approximations.","PeriodicalId":425645,"journal":{"name":"Symposium on Combinatorial Search","volume":"77 10","pages":"255-256"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Combinatorial Search","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/socs.v17i1.31568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bi-objective search requires computing a Pareto solution set which contains a set of paths. In real-world applications, Pareto solution sets may contain several tens or even hundreds of solutions. For a human user trying to commit to just one of these paths, navigating through a large solution set may become overwhelming, which motivates the problem of computing small, good-quality subsets of Pareto frontiers. This document presents two main contributions. First, we provide a simple formalization of good-quality subsets of a Pareto solution set. For this, we use measure of richness which has been employed in the study of Population Dynamics. Second, we propose Chebyshev BOA*, a variant of BOA* to compute good-quality subset approximations.
在双目标搜索中寻找帕累托解决方案集的小型多样化子集(扩展摘要)
双目标搜索需要计算一个帕累托解决方案集,其中包含一组路径。在实际应用中,帕累托解决方案集可能包含几十个甚至上百个解决方案。对于试图只选择其中一条路径的人类用户来说,浏览庞大的解决方案集可能会变得难以承受,这就促使人们提出了计算帕累托前沿的小型优质子集的问题。本文有两大贡献。首先,我们对帕累托解决方案集的优质子集进行了简单的形式化。为此,我们使用了在人口动力学研究中使用过的丰富度量。其次,我们提出了切比雪夫 BOA*,这是 BOA* 的一种变体,用于计算优质子集近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信