Benxuan Li, Shijie Zhan, Zhe Li, Wenlong Ming, Gehan A. J. Amaratunga, Bo Hou
{"title":"Dissolvable photovoltaic cells on hydrogel","authors":"Benxuan Li, Shijie Zhan, Zhe Li, Wenlong Ming, Gehan A. J. Amaratunga, Bo Hou","doi":"10.1063/5.0197820","DOIUrl":null,"url":null,"abstract":"Solar energy is potentially the largest source of renewable energy for providing electrical power for human society. However, significant advances are required to make photovoltaic technologies have a low-carbon footprint in manufacture, be environmentally friendly at the end of their lives through recyclability, and be biodegradable. Here we report dissolvable organic photovoltaic devices based on poly(2-hydroxyethyl methacrylate), which show equal power conversion efficiency to their glass substrate-based counterparts. We use a novel method of including smectic liquid crystal (7-dioctyl[1]benzothieno[3,2- b][1]benzothiophene, C8-BTBT) as a crystal phase regulator in the heterojunction donor:acceptor polymer system to maintain the disposable organic solar cell efficiency without pre- or post-thermal annealing. The results show strong promise not only for more sustainable solar-cell fabrication but also as disposable and biocompatible solar cells for self-powered (energy harvesting) wearable and biomedical devices.","PeriodicalId":504659,"journal":{"name":"APL Materials","volume":"20 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0197820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Solar energy is potentially the largest source of renewable energy for providing electrical power for human society. However, significant advances are required to make photovoltaic technologies have a low-carbon footprint in manufacture, be environmentally friendly at the end of their lives through recyclability, and be biodegradable. Here we report dissolvable organic photovoltaic devices based on poly(2-hydroxyethyl methacrylate), which show equal power conversion efficiency to their glass substrate-based counterparts. We use a novel method of including smectic liquid crystal (7-dioctyl[1]benzothieno[3,2- b][1]benzothiophene, C8-BTBT) as a crystal phase regulator in the heterojunction donor:acceptor polymer system to maintain the disposable organic solar cell efficiency without pre- or post-thermal annealing. The results show strong promise not only for more sustainable solar-cell fabrication but also as disposable and biocompatible solar cells for self-powered (energy harvesting) wearable and biomedical devices.