Pablo Cordero, Manuel Enciso, Ángel Mora, Francisco Pérez-Gámez
{"title":"Attribute implications with unknown information based on weak Heyting algebras","authors":"Pablo Cordero, Manuel Enciso, Ángel Mora, Francisco Pérez-Gámez","doi":"10.1016/j.fss.2024.109026","DOIUrl":null,"url":null,"abstract":"<div><p>Simplification logic, a logic for attribute implications, was originally defined for Boolean sets. It was extended to distributive fuzzy sets by using a complete dual Heyting algebra. In this paper, we weaken this restriction in the sense that we prove that it is possible to define a simplification logic on fuzzy sets in which the membership value structure is not necessarily distributive. For this purpose, we replace the structure of the complete dual Heyting algebra by the so-called weak complete dual Heyting algebra. We demonstrate the soundness and completeness of this simplification logic, and provide a characterisation of the operations defining weak complete dual Heyting algebras.</p></div>","PeriodicalId":55130,"journal":{"name":"Fuzzy Sets and Systems","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0165011424001726/pdfft?md5=ee2ac4c6b8ecd2ed61b7fd43fe035028&pid=1-s2.0-S0165011424001726-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Sets and Systems","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165011424001726","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Simplification logic, a logic for attribute implications, was originally defined for Boolean sets. It was extended to distributive fuzzy sets by using a complete dual Heyting algebra. In this paper, we weaken this restriction in the sense that we prove that it is possible to define a simplification logic on fuzzy sets in which the membership value structure is not necessarily distributive. For this purpose, we replace the structure of the complete dual Heyting algebra by the so-called weak complete dual Heyting algebra. We demonstrate the soundness and completeness of this simplification logic, and provide a characterisation of the operations defining weak complete dual Heyting algebras.
期刊介绍:
Since its launching in 1978, the journal Fuzzy Sets and Systems has been devoted to the international advancement of the theory and application of fuzzy sets and systems. The theory of fuzzy sets now encompasses a well organized corpus of basic notions including (and not restricted to) aggregation operations, a generalized theory of relations, specific measures of information content, a calculus of fuzzy numbers. Fuzzy sets are also the cornerstone of a non-additive uncertainty theory, namely possibility theory, and of a versatile tool for both linguistic and numerical modeling: fuzzy rule-based systems. Numerous works now combine fuzzy concepts with other scientific disciplines as well as modern technologies.
In mathematics fuzzy sets have triggered new research topics in connection with category theory, topology, algebra, analysis. Fuzzy sets are also part of a recent trend in the study of generalized measures and integrals, and are combined with statistical methods. Furthermore, fuzzy sets have strong logical underpinnings in the tradition of many-valued logics.