From Data to Diagnosis: Narrative Review of Open-Access Mammography Databases for Breast Cancer Detection

Jaber H Jaradat, Raghad Amro, R. Hamamreh, Ayman Musleh, Mahmoud Abdelgalil
{"title":"From Data to Diagnosis: Narrative Review of Open-Access Mammography Databases for Breast Cancer Detection","authors":"Jaber H Jaradat, Raghad Amro, R. Hamamreh, Ayman Musleh, Mahmoud Abdelgalil","doi":"10.59707/hymrpfnz8344","DOIUrl":null,"url":null,"abstract":"Breast cancer remains a significant global health challenge, necessitating advancements in screening and diagnostic methods for its early detection and treatment. This review explores the role of open-access mammography databases in facilitating research and development in the field of breast cancer detection, particularly through the integration of artificial intelligence techniques such as machine learning and deep learning. In this review, we highlight the open-access databases, including the Digital Database for Screening Mammography (DDSM), the Curated Breast Imaging Subset of DDSM (CBIS-DDSM), Mini-DDSM, INbreast, Mammographic Image Analysis Society Dataset (MIAS), and the China Mammography and Mastopathy Dataset (CMMD). Each database was analyzed in terms of its composition, features, limitations, and contributions to breast cancer research. In addition, we highlight the importance of open-access databases in enabling collaborative research, improving algorithm development, and enhancing the accuracy and efficiency of breast cancer detection methods computer-aided diagnosis.","PeriodicalId":335220,"journal":{"name":"High Yield Medical Reviews","volume":"49 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Yield Medical Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59707/hymrpfnz8344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer remains a significant global health challenge, necessitating advancements in screening and diagnostic methods for its early detection and treatment. This review explores the role of open-access mammography databases in facilitating research and development in the field of breast cancer detection, particularly through the integration of artificial intelligence techniques such as machine learning and deep learning. In this review, we highlight the open-access databases, including the Digital Database for Screening Mammography (DDSM), the Curated Breast Imaging Subset of DDSM (CBIS-DDSM), Mini-DDSM, INbreast, Mammographic Image Analysis Society Dataset (MIAS), and the China Mammography and Mastopathy Dataset (CMMD). Each database was analyzed in terms of its composition, features, limitations, and contributions to breast cancer research. In addition, we highlight the importance of open-access databases in enabling collaborative research, improving algorithm development, and enhancing the accuracy and efficiency of breast cancer detection methods computer-aided diagnosis.
从数据到诊断:用于乳腺癌检测的开放式乳腺 X 射线照相数据库的叙述性回顾
乳腺癌仍然是全球健康面临的一项重大挑战,需要在筛查和诊断方法上取得进步,以实现早期检测和治疗。本综述探讨了开放存取的乳腺 X 射线摄影数据库在促进乳腺癌检测领域的研究与开发方面所起的作用,特别是通过整合机器学习和深度学习等人工智能技术所起的作用。在这篇综述中,我们重点介绍了开放存取的数据库,包括乳腺X线摄影筛查数字数据库(DDSM)、DDSM的乳腺成像子集(CBIS-DDSM)、Mini-DDSM、INbreast、乳腺摄影图像分析协会数据集(MIAS)以及中国乳腺摄影和乳腺病数据集(CMMD)。我们对每个数据库的组成、特点、局限性以及对乳腺癌研究的贡献进行了分析。此外,我们还强调了开放数据库在促进合作研究、改进算法开发以及提高乳腺癌检测方法计算机辅助诊断的准确性和效率方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信