Real-Time Semantic Segmentation of Remote Sensing Images for Land Management

Yinsheng Zhang, Ru Ji, Yuxiang Hu, Yulong Yang, Xin Chen, Xiuxian Duan, Huilin Shan
{"title":"Real-Time Semantic Segmentation of Remote Sensing Images for Land Management","authors":"Yinsheng Zhang, Ru Ji, Yuxiang Hu, Yulong Yang, Xin Chen, Xiuxian Duan, Huilin Shan","doi":"10.14358/pers.23-00083r2","DOIUrl":null,"url":null,"abstract":"Remote sensing image segmentation is a crucial technique in the field of land management. However, existing semantic segmentation networks require a large number of floating-point operations (FLOPs) and have long run times. In this paper, we propose a dual-path feature aggregation network\n (DPFANet) specifically designed for the low-latency operations required in land management applications. Firstly, we use four sets of spatially separable convolutions with varying dilation rates to extract spatial features. Additionally, we use an improved version of MobileNetV2 to extract\n semantic features. Furthermore, we use an asymmetric multi-scale fusion module and dual-path feature aggregation module to enhance feature extraction and fusion. Finally, a decoder is constructed to enable progressive up-sampling. Experimental results on the Potsdam data set and the Gaofen\n image data set (GID) demonstrate that DPFANet achieves overall accuracy of 92.2% and 89.3%, respectively. The FLOPs are 6.72 giga and the number of parameters is 2.067 million.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.23-00083r2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Remote sensing image segmentation is a crucial technique in the field of land management. However, existing semantic segmentation networks require a large number of floating-point operations (FLOPs) and have long run times. In this paper, we propose a dual-path feature aggregation network (DPFANet) specifically designed for the low-latency operations required in land management applications. Firstly, we use four sets of spatially separable convolutions with varying dilation rates to extract spatial features. Additionally, we use an improved version of MobileNetV2 to extract semantic features. Furthermore, we use an asymmetric multi-scale fusion module and dual-path feature aggregation module to enhance feature extraction and fusion. Finally, a decoder is constructed to enable progressive up-sampling. Experimental results on the Potsdam data set and the Gaofen image data set (GID) demonstrate that DPFANet achieves overall accuracy of 92.2% and 89.3%, respectively. The FLOPs are 6.72 giga and the number of parameters is 2.067 million.
用于土地管理的遥感图像实时语义分割
遥感图像分割是土地管理领域的一项重要技术。然而,现有的语义分割网络需要大量浮点运算(FLOP),运行时间较长。在本文中,我们提出了一种双路径特征聚合网络(DPFANet),专门针对土地管理应用中所需的低延迟操作而设计。首先,我们使用四组不同扩张率的空间可分离卷积来提取空间特征。此外,我们还使用 MobileNetV2 的改进版本来提取语义特征。此外,我们还使用非对称多尺度融合模块和双路径特征聚合模块来增强特征提取和融合。最后,我们还构建了一个解码器,以实现渐进式上采样。波茨坦数据集和高分图像数据集(GID)的实验结果表明,DPFANet 的总体准确率分别达到 92.2% 和 89.3%。FLOP 为 6.72 千兆,参数数为 206.7 万。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信