Lazy Evaluation of Negative Preconditions in Planning Domains (Extended Abstract)

Santiago Franco, Jamie O. Roberts, Sara Bernardini
{"title":"Lazy Evaluation of Negative Preconditions in Planning Domains (Extended Abstract)","authors":"Santiago Franco, Jamie O. Roberts, Sara Bernardini","doi":"10.1609/socs.v17i1.31576","DOIUrl":null,"url":null,"abstract":"AI planning technology faces performance issues with large-scale problems with negative preconditions. In this extended abstract, we show how to leverage the power of the Finite Domain Representation (FDR) used by the popular Fast Downward planner for such domains. FDR improves scalability thanks to its use of multi-valued state variables. However, it scales poorly when dealing with negative preconditions. We propose an alternative hybrid approach that evaluates negative preconditions on the fly during search but only when strictly needed. This is compared to the traditional use of domain-specific PDDL bookmark predicates, increasing memory usage, and automated transformations to Positive Normal Form, further escalating memory consumption.","PeriodicalId":425645,"journal":{"name":"Symposium on Combinatorial Search","volume":"54 16","pages":"271-272"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Combinatorial Search","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/socs.v17i1.31576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

AI planning technology faces performance issues with large-scale problems with negative preconditions. In this extended abstract, we show how to leverage the power of the Finite Domain Representation (FDR) used by the popular Fast Downward planner for such domains. FDR improves scalability thanks to its use of multi-valued state variables. However, it scales poorly when dealing with negative preconditions. We propose an alternative hybrid approach that evaluates negative preconditions on the fly during search but only when strictly needed. This is compared to the traditional use of domain-specific PDDL bookmark predicates, increasing memory usage, and automated transformations to Positive Normal Form, further escalating memory consumption.
规划域中否定先决条件的懒惰评估(扩展摘要)
人工智能规划技术在处理具有负先决条件的大规模问题时面临着性能问题。在这篇扩展摘要中,我们展示了如何利用流行的快速向下规划器(Fast Downward planner)所使用的有限域表示(FDR)功能来处理此类域。由于使用了多值状态变量,FDR 提高了可扩展性。但是,在处理负先决条件时,它的扩展性很差。我们提出了另一种混合方法,即在搜索过程中即时评估负先决条件,但只有在严格需要时才进行评估。这与传统的使用特定领域的 PDDL 书签谓词(增加了内存使用量)和自动转换为正则表达式(进一步增加了内存消耗量)的方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信