Jonathan Morag, Yue Zhang, Daniel Koyfman, Zhe Chen, Ariel Felner, Daniel D. Harabor, Roni Stern
{"title":"Prioritised Planning with Guarantees","authors":"Jonathan Morag, Yue Zhang, Daniel Koyfman, Zhe Chen, Ariel Felner, Daniel D. Harabor, Roni Stern","doi":"10.1609/socs.v17i1.31545","DOIUrl":null,"url":null,"abstract":"Prioritised Planning (PP) is a family of incomplete and sub-optimal algorithms for multi-agent and multi-robot navigation. In PP, agents compute collision-free paths in a fixed order, one at a time. Although fast and usually effective, PP can still fail, leaving users without explanation or recourse. In this work, we give a theoretical and empirical basis for better understanding the underlying problem solved by PP, which we call Priority Constrained MAPF (PC-MAPF). We first investigate the complexity of PC-MAPF and show that the decision problem is NP-hard. We then develop Priority Constrained Search (PCS), a new algorithm that is both complete and optimal with respect to a fixed priority ordering. We experiment with PCS in a range of settings, including comparisons with existing PP baselines, and we give first-known results for optimal PC-MAPF on a popular benchmark set.","PeriodicalId":425645,"journal":{"name":"Symposium on Combinatorial Search","volume":"19 11","pages":"82-90"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Combinatorial Search","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/socs.v17i1.31545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Prioritised Planning (PP) is a family of incomplete and sub-optimal algorithms for multi-agent and multi-robot navigation. In PP, agents compute collision-free paths in a fixed order, one at a time. Although fast and usually effective, PP can still fail, leaving users without explanation or recourse. In this work, we give a theoretical and empirical basis for better understanding the underlying problem solved by PP, which we call Priority Constrained MAPF (PC-MAPF). We first investigate the complexity of PC-MAPF and show that the decision problem is NP-hard. We then develop Priority Constrained Search (PCS), a new algorithm that is both complete and optimal with respect to a fixed priority ordering. We experiment with PCS in a range of settings, including comparisons with existing PP baselines, and we give first-known results for optimal PC-MAPF on a popular benchmark set.