Nondestructive detection and classification of impurities-containing seed cotton based on hyperspectral imaging and one-dimensional convolutional neural network
Yeqi Fei , Zhenye Li , Tingting Zhu , Zengtao Chen , Chao Ni
{"title":"Nondestructive detection and classification of impurities-containing seed cotton based on hyperspectral imaging and one-dimensional convolutional neural network","authors":"Yeqi Fei , Zhenye Li , Tingting Zhu , Zengtao Chen , Chao Ni","doi":"10.1016/j.dcan.2024.05.008","DOIUrl":null,"url":null,"abstract":"<div><div>The cleanliness of seed cotton plays a critical role in the pre-treatment of cotton textiles, and the removal of impurity during the harvesting process directly determines the quality and market value of cotton textiles. By fusing band combination optimization with deep learning, this study aims to achieve more efficient and accurate detection of film impurities in seed cotton on the production line. By applying hyperspectral imaging and a one-dimensional deep learning algorithm, we detect and classify impurities in seed cotton after harvest. The main categories detected include pure cotton, conveyor belt, film covering seed cotton, and film adhered to the conveyor belt. The proposed method achieves an impurity detection rate of 99.698%. To further ensure the feasibility and practical application potential of this strategy, we compare our results against existing mainstream methods. In addition, the model shows excellent recognition performance on pseudo-color images of real samples. With a processing time of 11.764 μs per pixel from experimental data, it shows a much improved speed requirement while maintaining the accuracy of real production lines. This strategy provides an accurate and efficient method for removing impurities during cotton processing.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 2","pages":"Pages 308-316"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864824000671","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The cleanliness of seed cotton plays a critical role in the pre-treatment of cotton textiles, and the removal of impurity during the harvesting process directly determines the quality and market value of cotton textiles. By fusing band combination optimization with deep learning, this study aims to achieve more efficient and accurate detection of film impurities in seed cotton on the production line. By applying hyperspectral imaging and a one-dimensional deep learning algorithm, we detect and classify impurities in seed cotton after harvest. The main categories detected include pure cotton, conveyor belt, film covering seed cotton, and film adhered to the conveyor belt. The proposed method achieves an impurity detection rate of 99.698%. To further ensure the feasibility and practical application potential of this strategy, we compare our results against existing mainstream methods. In addition, the model shows excellent recognition performance on pseudo-color images of real samples. With a processing time of 11.764 μs per pixel from experimental data, it shows a much improved speed requirement while maintaining the accuracy of real production lines. This strategy provides an accurate and efficient method for removing impurities during cotton processing.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.