Mohamed-Amine Babay, Mustapha Adar, Souad Touairi, Ahmed Chebak, Mustapha Mabrouki
{"title":"Numerical Simulation and Thermal Analysis of Pressurized Hydrogen Vehicle Cylinders: Impact of Geometry and Phase Change Materials","authors":"Mohamed-Amine Babay, Mustapha Adar, Souad Touairi, Ahmed Chebak, Mustapha Mabrouki","doi":"10.37934/arfmts.117.2.7190","DOIUrl":null,"url":null,"abstract":"This comprehensive study investigates the nuanced aspects of pressurized hydrogen vehicle cylinders during refueling, employing numerical simulation and thermal analysis. The examination encompasses the intricate dynamics influenced by cylinder geometry, mass flow rate variations, and the integration of phase change materials (PCMs). Simulations involving cylinders with diverse length-to-diameter ratios and inlet diameters highlight the impact of these parameters on temperature control. Notably, smaller length-to-diameter ratios prove effective for temperature regulation, while larger inlet diameters mitigate temperature rise. The study further explores the role of varying mass flow rates, revealing that an increasing flow rate during refueling results in the lowest temperature rise. In addition to geometry and mass flow rate considerations, the integration of PCMs is a focal point. Modeling and parametric analysis are employed to assess the feasibility of incorporating these materials. The study contributes valuable insights into optimizing the thermal performance and safety of hydrogen fuel systems. The holistic approach considers the interplay of geometry, mass flow rate dynamics, and the innovative use of PCMs, offering a multifaceted understanding of the factors influencing pressurized hydrogen vehicle cylinders.","PeriodicalId":37460,"journal":{"name":"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/arfmts.117.2.7190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This comprehensive study investigates the nuanced aspects of pressurized hydrogen vehicle cylinders during refueling, employing numerical simulation and thermal analysis. The examination encompasses the intricate dynamics influenced by cylinder geometry, mass flow rate variations, and the integration of phase change materials (PCMs). Simulations involving cylinders with diverse length-to-diameter ratios and inlet diameters highlight the impact of these parameters on temperature control. Notably, smaller length-to-diameter ratios prove effective for temperature regulation, while larger inlet diameters mitigate temperature rise. The study further explores the role of varying mass flow rates, revealing that an increasing flow rate during refueling results in the lowest temperature rise. In addition to geometry and mass flow rate considerations, the integration of PCMs is a focal point. Modeling and parametric analysis are employed to assess the feasibility of incorporating these materials. The study contributes valuable insights into optimizing the thermal performance and safety of hydrogen fuel systems. The holistic approach considers the interplay of geometry, mass flow rate dynamics, and the innovative use of PCMs, offering a multifaceted understanding of the factors influencing pressurized hydrogen vehicle cylinders.
期刊介绍:
This journal welcomes high-quality original contributions on experimental, computational, and physical aspects of fluid mechanics and thermal sciences relevant to engineering or the environment, multiphase and microscale flows, microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.