Swarm Optimisation to Model the Surface Roughness of an AISI 4340 Turning using the Hot Machining Process

Q3 Chemical Engineering
Ismail Thamrin, Amrifan Saladin Mohruni, Irsyadi Yani, Riman Sipahutar, Zulkarnain Ali Leman
{"title":"Swarm Optimisation to Model the Surface Roughness of an AISI 4340 Turning using the Hot Machining Process","authors":"Ismail Thamrin, Amrifan Saladin Mohruni, Irsyadi Yani, Riman Sipahutar, Zulkarnain Ali Leman","doi":"10.37934/arfmts.117.2.147156","DOIUrl":null,"url":null,"abstract":"Given that surface roughness is used to determine product quality, it is a crucial consideration in turning machining. Moreover, it considerably affects the cost of machining. This study forecasts surface roughness values for AISI 304 stainless-steel hot lathe machining using the particle swarm optimisation (PSO) methodology. The workpiece is heated to 100, 150 or 200 degrees Celsius before being turned. Afterwards, the depth, speed and feeding rate of cutting are adjusted to determine the surface roughness of the workpiece. The feeding rate is determined to be the most considerable influence in raising the surface roughness value, followed by cutting depth, cutting speed and workpiece temperature. In terms of accuracy, empirical modelling performs better. The PSO methodology illustrates an effective and straightforward method that can be applied to calibrate different empirical machining models.","PeriodicalId":37460,"journal":{"name":"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/arfmts.117.2.147156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Given that surface roughness is used to determine product quality, it is a crucial consideration in turning machining. Moreover, it considerably affects the cost of machining. This study forecasts surface roughness values for AISI 304 stainless-steel hot lathe machining using the particle swarm optimisation (PSO) methodology. The workpiece is heated to 100, 150 or 200 degrees Celsius before being turned. Afterwards, the depth, speed and feeding rate of cutting are adjusted to determine the surface roughness of the workpiece. The feeding rate is determined to be the most considerable influence in raising the surface roughness value, followed by cutting depth, cutting speed and workpiece temperature. In terms of accuracy, empirical modelling performs better. The PSO methodology illustrates an effective and straightforward method that can be applied to calibrate different empirical machining models.
使用热加工工艺对 AISI 4340 车削的表面粗糙度进行群优化建模
鉴于表面粗糙度用于确定产品质量,因此它是车削加工中的一个重要考虑因素。此外,它对加工成本也有很大影响。本研究采用粒子群优化(PSO)方法预测 AISI 304 不锈钢热车床加工的表面粗糙度值。工件在车削前被加热至 100、150 或 200 摄氏度。然后,调整切削深度、速度和进给量,以确定工件的表面粗糙度。进给速度对提高表面粗糙度值的影响最大,其次是切削深度、切削速度和工件温度。就精度而言,经验建模的效果更好。PSO 方法是一种有效而直接的方法,可用于校准不同的经验加工模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
2.40
自引率
0.00%
发文量
176
期刊介绍: This journal welcomes high-quality original contributions on experimental, computational, and physical aspects of fluid mechanics and thermal sciences relevant to engineering or the environment, multiphase and microscale flows, microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信