Mathematical Models of Natural Rubber Sheets Drying: Difference Acid Coagulation Cases

Q3 Chemical Engineering
Visit Eakvanich, Wachara Kalasee, Putipong Lakachaiworakun, Panya Dangwilailux, Wassachol Wattana
{"title":"Mathematical Models of Natural Rubber Sheets Drying: Difference Acid Coagulation Cases","authors":"Visit Eakvanich, Wachara Kalasee, Putipong Lakachaiworakun, Panya Dangwilailux, Wassachol Wattana","doi":"10.37934/arfmts.117.2.3745","DOIUrl":null,"url":null,"abstract":"The mathematical model for drying process is a useful tool in process optimization and drying chamber design. The research purposes of this study were to investigate the influence of drying temperature on drying time and the modelling the drying kinetics of the natural rubber (NR) sheets. The NR sheets which produce from commercial formic acid, commercial acetic acids, and ammonia plus commercial formic acid were studied at drying temperature of 40, 50, and 60oC and air speed of 0.5 m/s. The results indicated that the drying time was substantially reduced with an increase in temperature. The moisture content ratio of rubber sheets produce from commercial formic acid coagulation was similar to the sheets produce from commercial acetic acids coagulation. However, the drying time of them were longer than the drying time of the sheets produce from ammonia plus commercial formic acid coagulation. Finally, the logarithmic model was the best model which suitable to predict the moisture content ratio of the sheets drying with all experimental condition.","PeriodicalId":37460,"journal":{"name":"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences","volume":"26 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/arfmts.117.2.3745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The mathematical model for drying process is a useful tool in process optimization and drying chamber design. The research purposes of this study were to investigate the influence of drying temperature on drying time and the modelling the drying kinetics of the natural rubber (NR) sheets. The NR sheets which produce from commercial formic acid, commercial acetic acids, and ammonia plus commercial formic acid were studied at drying temperature of 40, 50, and 60oC and air speed of 0.5 m/s. The results indicated that the drying time was substantially reduced with an increase in temperature. The moisture content ratio of rubber sheets produce from commercial formic acid coagulation was similar to the sheets produce from commercial acetic acids coagulation. However, the drying time of them were longer than the drying time of the sheets produce from ammonia plus commercial formic acid coagulation. Finally, the logarithmic model was the best model which suitable to predict the moisture content ratio of the sheets drying with all experimental condition.
天然橡胶板干燥数学模型:差异酸凝案例
干燥过程的数学模型是工艺优化和干燥室设计的有用工具。本研究的目的是探讨干燥温度对干燥时间的影响,并建立天然橡胶(NR)板材干燥动力学模型。在干燥温度为 40、50 和 60 摄氏度、风速为 0.5 米/秒的条件下,研究了由商用甲酸、商用乙酸和氨水加商用甲酸生产的 NR 板材。结果表明,随着温度的升高,干燥时间大大缩短。商用甲酸凝固法生产的橡胶板的含水率与商用醋酸凝固法生产的橡胶板相似。然而,它们的干燥时间都比氨水加商用甲酸凝固法生产的橡胶板的干燥时间长。最后,对数模型是预测所有实验条件下片材干燥含水率的最佳模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
2.40
自引率
0.00%
发文量
176
期刊介绍: This journal welcomes high-quality original contributions on experimental, computational, and physical aspects of fluid mechanics and thermal sciences relevant to engineering or the environment, multiphase and microscale flows, microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信