Sensitivity to intensity and distribution of the temperature field in the nonlinear thermo-mechanical analysis of laminated glass plates

IF 2.8 3区 工程技术 Q2 MECHANICS
Antonella Corrado, Domenico Magisano, Leonardo Leonetti, Giovanni Garcea
{"title":"Sensitivity to intensity and distribution of the temperature field in the nonlinear thermo-mechanical analysis of laminated glass plates","authors":"Antonella Corrado,&nbsp;Domenico Magisano,&nbsp;Leonardo Leonetti,&nbsp;Giovanni Garcea","doi":"10.1016/j.ijnonlinmec.2024.104792","DOIUrl":null,"url":null,"abstract":"<div><p>Glass laminates consist of stiff glass plies permanently shear-coupled by polymeric interposed layers. When an external temperature rise occurs, the interlayers undergo a dramatic stiffness decay. As a consequence, not only the sectional warping typical of alternating stiff/soft composites is intensified, but also the overall behavior may evolve counter-intuitively. When slender elements prone to geometric nonlinearities are involved, even small thermal variations in intensity or distribution may act as uncertainty factors, strongly affecting the outcome. This paper proposes an efficient, robust, and accurate numerical framework to perform the sensitivity analysis to thermo-mechanical actions in glass plates. A large deformation isogeometric Kirchhoff-Love shell model enriched with through-the-thickness warping is employed, together with a generalized arc-length method involving a suitable temperature parameter as an additional unknown, namely the thermal amplifier or a spatial distribution coefficient. Numerical experiments are presented to highlight the effects that even small temperature variations produce on the equilibrium paths and the influence of the stiffness loss in the interlayer on the structural behavior and the accuracy of the models.</p></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020746224001574/pdfft?md5=34f20b916193798f33529fb1e509f00a&pid=1-s2.0-S0020746224001574-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746224001574","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Glass laminates consist of stiff glass plies permanently shear-coupled by polymeric interposed layers. When an external temperature rise occurs, the interlayers undergo a dramatic stiffness decay. As a consequence, not only the sectional warping typical of alternating stiff/soft composites is intensified, but also the overall behavior may evolve counter-intuitively. When slender elements prone to geometric nonlinearities are involved, even small thermal variations in intensity or distribution may act as uncertainty factors, strongly affecting the outcome. This paper proposes an efficient, robust, and accurate numerical framework to perform the sensitivity analysis to thermo-mechanical actions in glass plates. A large deformation isogeometric Kirchhoff-Love shell model enriched with through-the-thickness warping is employed, together with a generalized arc-length method involving a suitable temperature parameter as an additional unknown, namely the thermal amplifier or a spatial distribution coefficient. Numerical experiments are presented to highlight the effects that even small temperature variations produce on the equilibrium paths and the influence of the stiffness loss in the interlayer on the structural behavior and the accuracy of the models.

夹层玻璃板非线性热机械分析中对温度场强度和分布的敏感性
玻璃层压板由坚硬的玻璃层和永久性剪切耦合的聚合物夹层组成。当外部温度升高时,夹层的刚度会急剧下降。因此,不仅硬/软交替复合材料典型的断面翘曲现象会加剧,而且整体行为也会发生反直觉的变化。当涉及容易产生几何非线性的细长元件时,即使是强度或分布上的微小热变化也可能成为不确定因素,对结果产生强烈影响。本文提出了一种高效、稳健和精确的数值框架,用于对玻璃板的热机械作用进行敏感性分析。本文采用了大变形等距基尔霍夫-洛夫壳模型,该模型富含通厚翘曲,并采用了广义弧长法,将合适的温度参数作为附加未知量,即热放大器或空间分布系数。数值实验突出显示了即使很小的温度变化也会对平衡路径产生的影响,以及夹层中的刚度损失对结构行为和模型精度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
192
审稿时长
67 days
期刊介绍: The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear. The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas. Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信