Optimization of Aviation Biofuel Development as Sustainable Energy Through Simulation of System Dynamics Modeling

Q4 Environmental Science
D. Nuryadin, M. Nurcholis, G. A. Rahmanda, Indra Wahyu Pratama
{"title":"Optimization of Aviation Biofuel Development as Sustainable Energy Through Simulation of System Dynamics Modeling","authors":"D. Nuryadin, M. Nurcholis, G. A. Rahmanda, Indra Wahyu Pratama","doi":"10.46488/nept.2024.v23i02.046","DOIUrl":null,"url":null,"abstract":"This study aims to optimize the development of aviation biofuel as a sustainable energy source by simulating system dynamics modeling. This study is based on the System Dynamics modeling approach, which is a set of conceptual tools designed to understand the structure and dynamics of complex systems. This study used the system dynamics method specifically designed to analyze complex systems. It has been applied to various sustainability-related issues, including urban area sustainable development modeling, sustainability of water resources, environmental management, and sustainable urbanization. The result obtained using the quantitative modeling showed that the contribution of aviation biofuel to flight intensity in Indonesia is still insignificant. The practical implications of this study are that palm oil has the potential to be a viable raw material for aviation biofuel production in Indonesia, and implementing policies to mitigate negative consequences and optimize land use for aviation biofuel fuel production can contribute to sustainable urban development. The originality of this study lies in its use of System Dynamics modeling to analyze the potential of palm oil as a raw material for aviation biofuel production and identify the various social, economic, environmental, and technological factors that impact it.","PeriodicalId":18783,"journal":{"name":"Nature Environment and Pollution Technology","volume":"36 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Environment and Pollution Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46488/nept.2024.v23i02.046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to optimize the development of aviation biofuel as a sustainable energy source by simulating system dynamics modeling. This study is based on the System Dynamics modeling approach, which is a set of conceptual tools designed to understand the structure and dynamics of complex systems. This study used the system dynamics method specifically designed to analyze complex systems. It has been applied to various sustainability-related issues, including urban area sustainable development modeling, sustainability of water resources, environmental management, and sustainable urbanization. The result obtained using the quantitative modeling showed that the contribution of aviation biofuel to flight intensity in Indonesia is still insignificant. The practical implications of this study are that palm oil has the potential to be a viable raw material for aviation biofuel production in Indonesia, and implementing policies to mitigate negative consequences and optimize land use for aviation biofuel fuel production can contribute to sustainable urban development. The originality of this study lies in its use of System Dynamics modeling to analyze the potential of palm oil as a raw material for aviation biofuel production and identify the various social, economic, environmental, and technological factors that impact it.
通过系统动力学模型仿真优化作为可持续能源的航空生物燃料开发
本研究旨在通过模拟系统动力学建模,优化航空生物燃料作为可持续能源的发展。本研究基于系统动力学建模方法,这是一套旨在了解复杂系统结构和动态的概念工具。本研究采用了专门用于分析复杂系统的系统动力学方法。该方法已被应用于各种与可持续发展相关的问题,包括城市地区可持续发展建模、水资源的可持续发展、环境管理和可持续城市化。定量建模得出的结果表明,航空生物燃料对印尼飞行强度的贡献仍然微不足道。本研究的实际意义在于,棕榈油有潜力成为印尼航空生物燃料生产的可行原料,而实施政策以减轻负面影响并优化航空生物燃料生产的土地利用,则有助于城市的可持续发展。本研究的独创性在于利用系统动力学模型分析了棕榈油作为航空生物燃料生产原料的潜力,并确定了对其产生影响的各种社会、经济、环境和技术因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Environment and Pollution Technology
Nature Environment and Pollution Technology Environmental Science-Environmental Science (all)
CiteScore
1.20
自引率
0.00%
发文量
159
审稿时长
36 weeks
期刊介绍: The journal was established initially by the name of Journal of Environment and Pollution in 1994, whose name was later changed to Nature Environment and Pollution Technology in the year 2002. It has now become an open access online journal from the year 2017 with ISSN: 2395-3454 (Online). The journal was established especially to promote the cause for environment and to cater the need for rapid dissemination of the vast scientific and technological data generated in this field. It is a part of many reputed international indexing and abstracting agencies. The Journal has evoked a highly encouraging response among the researchers, scientists and technocrats. It has a reputed International Editorial Board and publishes peer reviewed papers. The Journal has also been approved by UGC (India). The journal publishes both original research and review papers. The ideology and scope of the Journal includes the following. -Monitoring, control and management of air, water, soil and noise pollution -Solid waste management -Industrial hygiene and occupational health -Biomedical aspects of pollution -Toxicological studies -Radioactive pollution and radiation effects -Wastewater treatment and recycling etc. -Environmental modelling -Biodiversity and conservation -Dynamics and behaviour of chemicals in environment -Natural resources, wildlife, forests and wetlands etc. -Environmental laws and legal aspects -Environmental economics -Any other topic related to environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信