The Locating Chromatic Number for the New Operation on Generalized Petersen Graphs N_P(m,1)

Agus Irawan, Ana Istiani
{"title":"The Locating Chromatic Number for the New Operation on Generalized Petersen Graphs N_P(m,1)","authors":"Agus Irawan, Ana Istiani","doi":"10.31851/sainmatika.v21i1.14864","DOIUrl":null,"url":null,"abstract":"The locating chromatic number is a graph invariant that quantifies the minimum number of colors required for proper vertex coloring, ensuring that any two vertices with the same color have distinct sets of neighbors. This study introduces a new operation on generalized Petersen graphs denoted by N_(P(m,1)), exploring its impact on locating chromatic numbers. Through systematic analysis, we aim to determine the specific conditions under which this operation influences the locating chromatic number and provide insights into the underlying graph-theoretical properties. The method for computing the locating chromatic number for the new operation on generalized Petersen graphs, denoted by N_(P(m,1)), entails determining the lower and upper limits. The results indicate that the locating chromatic number for the new operation on the generalized Petersen graph is 4 for m=4 and 5 for m≥5. The findings contribute to a broader understanding of graph coloring.","PeriodicalId":502832,"journal":{"name":"Sainmatika: Jurnal Ilmiah Matematika dan Ilmu Pengetahuan Alam","volume":"45 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sainmatika: Jurnal Ilmiah Matematika dan Ilmu Pengetahuan Alam","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31851/sainmatika.v21i1.14864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The locating chromatic number is a graph invariant that quantifies the minimum number of colors required for proper vertex coloring, ensuring that any two vertices with the same color have distinct sets of neighbors. This study introduces a new operation on generalized Petersen graphs denoted by N_(P(m,1)), exploring its impact on locating chromatic numbers. Through systematic analysis, we aim to determine the specific conditions under which this operation influences the locating chromatic number and provide insights into the underlying graph-theoretical properties. The method for computing the locating chromatic number for the new operation on generalized Petersen graphs, denoted by N_(P(m,1)), entails determining the lower and upper limits. The results indicate that the locating chromatic number for the new operation on the generalized Petersen graph is 4 for m=4 and 5 for m≥5. The findings contribute to a broader understanding of graph coloring.
广义彼得森图上新操作的定位色度数 N_P(m,1)
定位色度数是一种图不变式,它量化了正确顶点着色所需的最小颜色数,确保任何两个具有相同颜色的顶点都有不同的邻居集。本研究在广义彼得森图上引入了一种新的操作,用 N_(P(m,1))表示,探索其对定位色度数的影响。通过系统分析,我们旨在确定该操作影响定位色度数的具体条件,并深入探讨其背后的图论特性。计算广义彼得森图上新操作的定位色度数的方法(用 N_(P(m,1)表示)需要确定下限和上限。结果表明,广义彼得森图上新操作的定位色度数在 m=4 时为 4,在 m≥5 时为 5。这些发现有助于更广泛地理解图着色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信