A Transient Heat Transfer Analysis of Thermal Necrosis-Aided Dental Implant Removal

Muhammad Ikman Ishak, Ruslizam Daud, Siti Noor Fazliah Mohd Noor
{"title":"A Transient Heat Transfer Analysis of Thermal Necrosis-Aided Dental Implant Removal","authors":"Muhammad Ikman Ishak, Ruslizam Daud, Siti Noor Fazliah Mohd Noor","doi":"10.37934/arnht.20.1.1322","DOIUrl":null,"url":null,"abstract":"A prevalent and widely favoured solution for replacing lost teeth is the use of dental implants. The removal of dental implants, even when they are osseointegrated but unsuccessful, can be traumatic, resulting in the loss of healthy bone and adding complexity to the treatment procedure. Reducing the trauma associated with implant removal can be achieved by intentionally weakening the bone-implant attachment. To achieve this objective, a suggested approach involves utilising thermal necrosis to aid in the minimally invasive removal of implants. The objective of this study was to use finite element analysis to explore the optimal power output for intentionally inducing thermal necrosis in a dental implant. SolidWorks software was utilised to create a three-dimensional model of a dental implant assembly, which includes an abutment, screw, and implant body integrated into a segment of mandibular bone. The model was subsequently analysed using ANSYS software, applying device powers ranging from 5 to 40 W in 5 W increments on the top surface of the abutment. The results of the study showed that there was a considerable elevation in the temperatures of the bone and implant, even when employing the low power settings commonly used in electrosurgical procedures. Elevating the power level has led to a decrease in the time required for the bone and implant to reach 47°C, the initial temperature at which bone necrosis occurs. However, it is crucial to take into account the significant temperature rise in the implant body at higher power levels. The implementation of lower power settings could present a viable approach to achieving controlled osteonecrosis.","PeriodicalId":119773,"journal":{"name":"Journal of Advanced Research in Numerical Heat Transfer","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research in Numerical Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/arnht.20.1.1322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A prevalent and widely favoured solution for replacing lost teeth is the use of dental implants. The removal of dental implants, even when they are osseointegrated but unsuccessful, can be traumatic, resulting in the loss of healthy bone and adding complexity to the treatment procedure. Reducing the trauma associated with implant removal can be achieved by intentionally weakening the bone-implant attachment. To achieve this objective, a suggested approach involves utilising thermal necrosis to aid in the minimally invasive removal of implants. The objective of this study was to use finite element analysis to explore the optimal power output for intentionally inducing thermal necrosis in a dental implant. SolidWorks software was utilised to create a three-dimensional model of a dental implant assembly, which includes an abutment, screw, and implant body integrated into a segment of mandibular bone. The model was subsequently analysed using ANSYS software, applying device powers ranging from 5 to 40 W in 5 W increments on the top surface of the abutment. The results of the study showed that there was a considerable elevation in the temperatures of the bone and implant, even when employing the low power settings commonly used in electrosurgical procedures. Elevating the power level has led to a decrease in the time required for the bone and implant to reach 47°C, the initial temperature at which bone necrosis occurs. However, it is crucial to take into account the significant temperature rise in the implant body at higher power levels. The implementation of lower power settings could present a viable approach to achieving controlled osteonecrosis.
热坏死辅助拔除牙种植体的瞬态传热分析
使用牙科植入物来替换失去的牙齿是一种普遍且广受欢迎的解决方案。拔除牙科种植体,即使是在骨结合但不成功的情况下,也会造成创伤,导致健康骨质流失,增加治疗过程的复杂性。可以通过有意削弱骨与种植体的附着力来减少与种植体移除相关的创伤。为了实现这一目标,一种建议的方法是利用热坏死来帮助微创拔除种植体。本研究的目的是利用有限元分析来探索有意诱导牙科植入物热坏死的最佳功率输出。研究人员利用 SolidWorks 软件创建了牙科种植体组件的三维模型,该组件包括基台、螺钉和植入下颌骨的种植体。随后使用 ANSYS 软件对模型进行分析,在基台顶面施加 5 到 40 W 的设备功率,以 5 W 为增量。研究结果表明,即使采用电外科手术中常用的低功率设置,骨和种植体的温度也会显著升高。功率水平的提高导致骨和种植体达到 47°C 所需的时间缩短,而 47°C 是发生骨坏死的初始温度。但是,必须考虑到在较高功率下植入体的温度会显著升高。采用较低的功率设置是实现骨坏死可控的可行方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信