Detecting Type and Index Mutation in Cancer DNA Sequence Based on Needleman–Wunsch Algorithm

U. N. Wisesty, T R Mengko, Ayu Purwarianti, Adi Pancoro
{"title":"Detecting Type and Index Mutation in Cancer DNA Sequence Based on Needleman–Wunsch Algorithm","authors":"U. N. Wisesty, T R Mengko, Ayu Purwarianti, Adi Pancoro","doi":"10.21609/jiki.v17i2.1273","DOIUrl":null,"url":null,"abstract":"Detecting DNA sequence mutations in cancer patients contributes to early identification and treatment of the disease, which ultimately enhances the effectiveness of treatment. Bioinformatics utilizes sequence alignment as a powerful tool for identifying mutations in DNA sequences. We used the Needleman-Wunsch algorithm to identify mutations in DNA sequence data from cancer patients. The cancer sequence dataset used includes breast, cervix uteri, lung, colon, liver and prostate cancer. Various types of mutations were identified, such as Single Nucleotide Variant (SNV)/substitution, insertion, and deletion, locate by the nucleotide index. The Needleman Wunch algorithm can detect type and index mutation with the average F1-scores 0.9507 for all types of mutations, 0.9919 for SNV, 0.7554 for insertion, and 0.8658 for deletion with a tolerance of 5 bp. The F1-scores obtained are not correlated with gene length. The time required ranges from 1.03 seconds for a 290 base pair gene to 3211.45 seconds for a gene with 16613 base pairs.","PeriodicalId":31392,"journal":{"name":"Jurnal Ilmu Komputer dan Informasi","volume":"31 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Ilmu Komputer dan Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21609/jiki.v17i2.1273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting DNA sequence mutations in cancer patients contributes to early identification and treatment of the disease, which ultimately enhances the effectiveness of treatment. Bioinformatics utilizes sequence alignment as a powerful tool for identifying mutations in DNA sequences. We used the Needleman-Wunsch algorithm to identify mutations in DNA sequence data from cancer patients. The cancer sequence dataset used includes breast, cervix uteri, lung, colon, liver and prostate cancer. Various types of mutations were identified, such as Single Nucleotide Variant (SNV)/substitution, insertion, and deletion, locate by the nucleotide index. The Needleman Wunch algorithm can detect type and index mutation with the average F1-scores 0.9507 for all types of mutations, 0.9919 for SNV, 0.7554 for insertion, and 0.8658 for deletion with a tolerance of 5 bp. The F1-scores obtained are not correlated with gene length. The time required ranges from 1.03 seconds for a 290 base pair gene to 3211.45 seconds for a gene with 16613 base pairs.
基于 Needleman-Wunsch 算法检测癌症 DNA 序列中的类型和指数突变
检测癌症患者的 DNA 序列突变有助于疾病的早期识别和治疗,最终提高治疗效果。生物信息学将序列比对作为识别DNA序列突变的有力工具。我们使用 Needleman-Wunsch 算法来识别癌症患者 DNA 序列数据中的突变。使用的癌症序列数据集包括乳腺癌、子宫颈癌、肺癌、结肠癌、肝癌和前列腺癌。通过核苷酸指数定位,确定了各种类型的突变,如单核苷酸变异(SNV)/置换、插入和缺失。Needleman Wunch 算法可以检测出突变的类型和指数,所有类型突变的平均 F1 分数为 0.9507,SNV 为 0.9919,插入为 0.7554,缺失为 0.8658,容差为 5 bp。获得的 F1 分数与基因长度无关。所需时间从 290 碱基对基因的 1.03 秒到 16613 碱基对基因的 3211.45 秒不等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信